Are Toxic Chemicals Lowering Our IQ?

Written by Dr. Steve Chaney on . Posted in Environment and Health, Issues

Is Chemical Brain Drain A Pandemic?

 Author: Dr. Stephen Chaney

In a past issue of “Health Tips From the Professor” I examined the evidence suggesting that toxic chemicals in the home could cause childhood asthma. That is alarming because asthma can predispose individuals to other diseases and affects quality of life.

Confused ChildBut, what if that were only the tip of the iceberg? For example, a recent headline stated: “More Toxic Chemicals [In Our Environment] Are Damaging Children’s Brains”. If that headline is true, it’s downright scary.

The authors of this study suggested that toxic chemicals which are abundant in our environment can cause decreases in IQ and aggressive or hyperactive behavior in children – and that those changes may be permanent.

The Study Behind The Headlines

The paper that generated the headlines (Grandjean & Landrigan, The Lancet Neurology, 13: 330-338, 2014) was a review of the literature, not an actual clinical study.

Based on published clinical studies, the authors identified 12 chemicals commonly found in the environment as developmental neurotoxins (toxins that interfere with normal brain development) based. [If you would like to find out what those “Dirty Dozen” chemicals are and where they are found, click here.]

This finding compares with 6 developmental neurotoxins that they were able to identify in a similar study in 2006.

The authors were not claiming that the number or amount of toxic chemicals changed between 2006 and 2014. They were saying that science has advanced to the point where we can classify six more chemicals that have been in our environment for years as developmental neurotoxins.

Even more worrisome, the authors postulate that many more environmental neurotoxins remain undiscovered.

Are Toxic Chemicals Lowering Our IQ?

To answer that question, you need to look at some of the studies they cited in their review. For example:

  • Elevated blood lead levels in children are associated with as much as a 7 point decrease in IQ (Lamphear et al, Environmental Health Perspectives, 113: 894-899, 2005).
  • Elevated fluoride levels in drinking water are also associated with as much as a 7 point decrease in IQ (Choi et al, Environmental Health Perspectives, 120: 1362-1368, 2012).

The effects of many of the toxic chemicals on IQ were difficult to quantify, but the authors estimated that exposure of US children to just 3 of the chemicals (lead, methymercury and organophosphate pesticides) was sufficient to lower their average IQ by 1.6 points.

What Are The Potential Consequences?

The authors spoke of the environmental neurotoxins they identified as representing a “silent pandemic of a chemical brain drain” that could cost the US economy billions of dollars.

One of the blog posts I read on this topic summarized the consequences in a very graphic manner. It said:

If one child’s IQ is reduced by 5 points, it doesn’t appear to make a big difference.  For example, that child might be:

  • A little slower to learn
  • A little shorter of attention
  • A little less successful at tests and at work

That might result in $90,000 in lost lifetime earnings

However, if the average IQ of every child in the US were decreased by 5 points, the effect becomes significant:

  • Only half as many members of the next generation would be “intellectually gifted”.
  • Twice as many of the next generation would be “intellectually impaired”
  • Lost productivity could be in the billions

Of course, statements like that are a bit over the top. Drs. Grandjean and Landrigan did not claim that the net effect of the chemicals they identified was a 5 point drop in IQ. Nor did they claim that all US children were affected equally.

Still, it’s enough to make you think.

Are Toxic Chemicals Causing Behavior Problems?

Angry boy portraitThe authors cited numerous studies linking the chemical neurotoxins they identified to aggression and hyperactivity. But perhaps the most compelling reason to suspect that environmental chemicals may be affecting brain development is the spiraling incidence of developmental disorders such as autism and ADHD. For example:

  • Autism has increased by 78% since 2007 and now affects 1 of 88 eight year old children.
  • ADHD has increased by 43% since 2003 and now affects 11% of children age 4-17.

Some of this increase could be due to better diagnosis of these conditions, but nobody believes that all of it is due to improved diagnosis. The authors claim that much of this increase is likely due to environmental exposure to the kinds of developmental neurotoxins they identified.

Is The Science Solid?

This is a difficult area of research. You can’t do the gold standard double-blind, placebo-controlled clinical trial. Nobody in their right mind would give one group of children toxic chemicals and the other group a placebo.

The studies cited in this paper were mostly population studies. Basically this means that they compared children with exposure to certain toxic chemicals to a control group that was as similar as possible to the first group except that their exposure to the toxic chemicals was less.

The limitation of this kind of study is obvious. We are usually comparing children from different locations or of different backgrounds. We almost never know if we have controlled for all possible variables so that the groups are truly identical.

As a consequence it becomes important to ask how many studies come to the same conclusion. For some of the toxic chemicals, such as lead, methymercury and organophosphate pesticides, the weight of evidence is very strong. For some of the newer additions to their list of developmental neurotoxins, it is pretty clear that the chemicals have neurotoxic properties, but the significance of those effects on the developing human brain are hard to quantify at this point.

The Bottom Line:

1)     A recent review claims that there is a good scientific basis for classifying at least 12 environmental chemicals as developmental neurotoxins that are likely to reduce IQ and contribute to behavioral problems in US children. [If you would like to find out what those “Dirty Dozen” chemicals are and where they are found, click here.]

2)     The science behind the claims in this review is solid, but not iron-clad.

3)     However, there are times when we need to simply ask ourselves: “What if it were true?” The consequences of lowered IQ and developmental behavioral problems are so significant that it may not make sense to wait until we have unassailable scientific evidence before we act.

4)     We all need to be guardians of our personal environment. But, it is not easy. The “Dirty Dozen” chemicals identified in this study come from many sources:

  • Some are industrial pollutants. For those, we need lobby for better environmental regulation.
  • Some are persistent groundwater contaminants. For those we need to drink purified water whenever possible.
  • Some are insecticides and herbicides used in agriculture. For those we need to buy organic, locally grown produce when feasible.
  • Some are found in common household products and furnishings. For those we need to become educated label readers and use non-toxic products in our home whenever possible.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Tags: , , , , , , , ,

Trackback from your site.

Leave a comment

Recent Videos From Dr. Steve Chaney

READ THE ARTICLE
READ THE ARTICLE

Latest Article

Does Protein Supplement Timing Matter?

Posted May 15, 2018 by Dr. Steve Chaney

How Do You Gain Muscle Mass & Lose Fat Mass?

Author: Dr. Stephen Chaney

 

protein supplement timingMost of what you read about protein supplements on the internet is wrong. That is because most published studies on protein supplements:

  • Are very small
  • Are not double blinded.
    • Both the subjects and the investigators knew who got the protein supplement.
  • Are done by individual companies with their product.
    • You have no idea which ingredients are in their product are responsible for the effects they report.
    • You have no idea how their product compares with other protein products.
    • There is no standardization with respect to the amount or type of protein or the addition of non-protein ingredients.

Because of these limitations there is a lot of misleading information on the benefits of protein supplements timing and maximal benefit. Let’s start by looking at why people use protein supplements. Let’s also look at what is generally accepted as true with respect to the best supplement timing.

There are 4 major reasons people consume protein supplements:

  • Enhance the muscle gain associated with resistance training: In this case, protein supplements are customarily consumed concurrently with the workout.
  • Preserve muscle and accelerate fat loss while on a weight loss diet: In this case, protein supplements are customarily consumed with meals or as meal replacements.
  • Provide a healthier protein source. In this case, protein supplements are customarily consumed with meals in place of meat protein.
  • Prevent muscle loss associated with aging or illness. There is no customary pattern associated with this use of protein supplements.

How good are the data supporting the customary timing of protein supplementation? The answer is: Not very good. The timing is based on a collection of weak studies which do not always agree with each other.

The current study  (J.L. Hudson et al, Nutrition Reviews, 76: 461-468, 2018 ) was designed to fill this void in our knowledge. It is a meta-analysis that compares all reasonably good studies that have looked at the effect of protein supplement timing on weight gain or loss, lean muscle mass gain, fat loss, and the ratio of lean muscle mass to fat mass.

How Was The Study Done?

The authors started by doing a literature search of all studies that met the following criteria:

  • The study was a randomized control trial with parallel design. This means that study contained a control group. It does not mean that the investigators or subjects were blinded with respect to which subjects used a protein supplement and which did not.
  • The subjects were engaged in resistance training.
  • The study lasted 6 weeks or longer.
  • Reliable methods were used to measure body composition (lean muscle mass and fat mass).
  • The subjects were healthy and at least 19 years old.
  • There was no restriction on the food the subjects consumed.

The authors started with 2074 published studies and ended up with 34 that met all their criteria. They then separated the studies into two groups – those in which the protein supplements were used with meals and those in which the protein supplements were used between meals.

Both groups were diverse.

  • Group 1 included subjects who consumed their protein supplement with their meal and those who consumed their protein supplement as a meal replacement.
  • Group 2 included subjects who consumed their protein supplement concurrent with exercise (usually immediately after exercise) and those who consumed their protein supplement at a fixed time of day not associated with exercise.

Does Protein Supplement Timing Matter?

 

protein supplement timing workoutsBecause the individual studies were very diverse in the way they were designed, the authors could not calculate a reliable estimate of how much lean muscle mass was increased or fat mass was decreased. Instead, they calculated the percentage of studies showing an increase in lean muscle mass or a decrease in fat mass.

When the authors compared protein supplements consumed with meals versus protein supplements consumed between meals:

  • Weight gain was observed in 56% of the studies of protein supplementation with meals compared to 72% of the studies of protein supplementation between meals. In other words, protein supplements consumed with meals were less likely to lead to weight gain than protein supplements consumed between meals.
  • An increase in lean muscle mass was observed in 94% of the studies of protein supplementation with meals compared to 90% of the studies of protein supplementation between meals. In other words, timing of protein supplementation did not matter with respect to increase in muscle mass.
  • A loss of fat mass was observed in 87% of the studies of protein supplementation with meals compared to 59% of the studies of protein supplementation between meals. In other words, protein supplements consumed with meals were more likely to lead to loss of fat mass.
  • An increase in the ratio of lean muscle mass to fat mass was observed in 100% of the studies of protein supplementation with meals compared to 87% of the studies of protein supplementation between meals. In short, protein supplements consumed with meals were slightly more likely to lead to an increase in the ratio of lean muscle mass to fat mass.

The following seem to suggest protein supplement timing matters:

The authors pointed out that their findings were consistent with previous studies showing that when protein supplements are consumed with a meal they displace some of the calories that otherwise would have been consumed. Simply put, people naturally compensate by eating less of other foods.

In contrast, the authors stated that previous studies have shown that when foods, especially liquid foods, are consumed as snacks (between meals), people are less likely to compensate by reducing the calories consumed in the next meal.

The others concluded: “Concurrently with resistance training, consuming protein supplements with meals, rather than between meals, may more effectively promote weight control and reduce fat mass without influencing improvements in lean [muscle] mass.”

What Are The Limitations Of The Study?

Meta-analyses such as this one, are only as good as the studies included in the meta-analysis. Unfortunately, most sports nutrition studies are very weak studies. Thus, this meta-analysis is a perfect example of the “Garbage In: Garbage Out (GI:GO)” phenomenon.

For example, let’s start by looking at what the term “protein supplement” meant.

  • Because the studies were done by individual companies with their product, the protein supplements in this meta-analysis:
    • Included whey, casein, soy, bovine colostrum, rice or combinations of protein sources.
    • Were isolates, concentrates, or hydrolysates.
    • Contained various additions like creatine, amino acids, and carbohydrate.
  • As I discuss in my book, Slaying the Food Myths, previous studies have shown that optimal protein and leucine levels are needed to maximize the increase in muscle mass and decrease in fat mass associated with resistance exercise. However, neither protein nor leucine levels were standardized in the protein supplements included in this meta-analysis.
  • Previous studies have shown that protein supplements that have little effect on blood sugar levels (have a low glycemic index) are more likely to curb appetite. However, glycemic index was not standardized for the protein supplements included in this meta-analysis.

protein supplement timing workout peopleIn short, the conclusions of this study might be true for some protein supplements, but not for others. We have no way of knowing.

We also need to consider the composition of the two groups.

  • Protein supplements used as meal replacements are more likely to decrease weight and fat mass than protein supplements consumed with meals. Yet, both were included in group 1.
  • Some studies suggest that protein supplements consumed concurrent with resistance exercise are more likely to increase muscle mass than protein supplements consumed another time of day. Yet, both are included in group 2. We also have no idea whether the meals with protein supplements in group 1 were consumed shortly after exercise or at an entirely different time of day.

This was the most glaring weakness of the study because it was completely avoidable. The authors could have grouped the studies into categories that made more sense.

In other words, there are multiple weaknesses that limit the predictive power of this study.

What Can We Learn From This Study?

Despite its many limitations, this study does remind us that protein supplements do have calories. This is of relatively little importance for people whose primary goal is to increase lean muscle mass.

However, most of us are using protein supplements to lose weight or to increase our lean mass to fat mass ratio. Simply put, we are either trying to lean out (shape up) or lose weight. And, we want to lose that weight primarily by getting rid of excess fat. For us, calories do matter. With that in mind:

  • If we are consuming a protein supplement immediately after exercise or between meals we probably should make a conscious effort to reduce our daily caloric intake elsewhere in our diet.
  • Alternatively, we could consume the protein supplement with a meal, but time the meal so it occurs shortly after exercise.

 

The Bottom Line:

 

A recent study looked at the optimal timing of protein supplements consumed by subjects who were engaged in resistance exercise. Specifically, the study compared protein supplements consumed with meals versus protein supplements consumed between meals on weight, lean muscle mass, fat mass, and the ratio of lean muscle mass to fat mass. The study reported:

  • Protein supplements consumed with meals were less likely to lead to weight gain than protein supplements consumed between meals.
  • Timing of protein supplementation did not matter with respect to increase in muscle mass.
  • Protein supplements consumed with meals were more likely to lead to loss of fat mass.
  • Protein supplements consumed with meals were slightly more likely to lead to an increase in the ratio of lean mass to fat mass.

The authors pointed out that their findings were consistent with previous studies showing that when a protein supplement was consumed with a meal it displaces some of the calories that would have been otherwise consumed. Simply put, people naturally compensate by eating less of other foods.

In contrast, the authors said that previous studies have shown that when foods, especially liquid foods, are consumed as snacks (between meals), people are less likely to compensate by reducing the calories consumed in the next meal.

As discussed in the article above, the study has major weaknesses. However, despite its many weaknesses, this study does remind us that protein supplements do have calories. This is of relatively little importance for people whose primary goal is to increase lean muscle mass.

However, for those of us who are using protein supplements to lose weight or to increase our lean mass to fat mass ratio, calories do matter.  With that in mind:

  • If we are consuming a protein supplement immediately after exercise or between meals we probably should make a conscious effort to reduce our daily caloric intake elsewhere in our diet.
  • Alternatively, we could consume the protein supplement with a meal, but time the meal so it occurs shortly after exercise.

For more details, read the article above:

 

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

UA-43257393-1