Are Toxic Chemicals Lowering Our IQ?

Written by Dr. Steve Chaney on . Posted in Environment and Health, Issues

Is Chemical Brain Drain A Pandemic?

 Author: Dr. Stephen Chaney

In a past issue of “Health Tips From the Professor” I examined the evidence suggesting that toxic chemicals in the home could cause childhood asthma. That is alarming because asthma can predispose individuals to other diseases and affects quality of life.

Confused ChildBut, what if that were only the tip of the iceberg? For example, a recent headline stated: “More Toxic Chemicals [In Our Environment] Are Damaging Children’s Brains”. If that headline is true, it’s downright scary.

The authors of this study suggested that toxic chemicals which are abundant in our environment can cause decreases in IQ and aggressive or hyperactive behavior in children – and that those changes may be permanent.

The Study Behind The Headlines

The paper that generated the headlines (Grandjean & Landrigan, The Lancet Neurology, 13: 330-338, 2014) was a review of the literature, not an actual clinical study.

Based on published clinical studies, the authors identified 12 chemicals commonly found in the environment as developmental neurotoxins (toxins that interfere with normal brain development) based. [If you would like to find out what those “Dirty Dozen” chemicals are and where they are found, click here.]

This finding compares with 6 developmental neurotoxins that they were able to identify in a similar study in 2006.

The authors were not claiming that the number or amount of toxic chemicals changed between 2006 and 2014. They were saying that science has advanced to the point where we can classify six more chemicals that have been in our environment for years as developmental neurotoxins.

Even more worrisome, the authors postulate that many more environmental neurotoxins remain undiscovered.

Are Toxic Chemicals Lowering Our IQ?

To answer that question, you need to look at some of the studies they cited in their review. For example:

  • Elevated blood lead levels in children are associated with as much as a 7 point decrease in IQ (Lamphear et al, Environmental Health Perspectives, 113: 894-899, 2005).
  • Elevated fluoride levels in drinking water are also associated with as much as a 7 point decrease in IQ (Choi et al, Environmental Health Perspectives, 120: 1362-1368, 2012).

The effects of many of the toxic chemicals on IQ were difficult to quantify, but the authors estimated that exposure of US children to just 3 of the chemicals (lead, methymercury and organophosphate pesticides) was sufficient to lower their average IQ by 1.6 points.

What Are The Potential Consequences?

The authors spoke of the environmental neurotoxins they identified as representing a “silent pandemic of a chemical brain drain” that could cost the US economy billions of dollars.

One of the blog posts I read on this topic summarized the consequences in a very graphic manner. It said:

If one child’s IQ is reduced by 5 points, it doesn’t appear to make a big difference.  For example, that child might be:

  • A little slower to learn
  • A little shorter of attention
  • A little less successful at tests and at work

That might result in $90,000 in lost lifetime earnings

However, if the average IQ of every child in the US were decreased by 5 points, the effect becomes significant:

  • Only half as many members of the next generation would be “intellectually gifted”.
  • Twice as many of the next generation would be “intellectually impaired”
  • Lost productivity could be in the billions

Of course, statements like that are a bit over the top. Drs. Grandjean and Landrigan did not claim that the net effect of the chemicals they identified was a 5 point drop in IQ. Nor did they claim that all US children were affected equally.

Still, it’s enough to make you think.

Are Toxic Chemicals Causing Behavior Problems?

Angry boy portraitThe authors cited numerous studies linking the chemical neurotoxins they identified to aggression and hyperactivity. But perhaps the most compelling reason to suspect that environmental chemicals may be affecting brain development is the spiraling incidence of developmental disorders such as autism and ADHD. For example:

  • Autism has increased by 78% since 2007 and now affects 1 of 88 eight year old children.
  • ADHD has increased by 43% since 2003 and now affects 11% of children age 4-17.

Some of this increase could be due to better diagnosis of these conditions, but nobody believes that all of it is due to improved diagnosis. The authors claim that much of this increase is likely due to environmental exposure to the kinds of developmental neurotoxins they identified.

Is The Science Solid?

This is a difficult area of research. You can’t do the gold standard double-blind, placebo-controlled clinical trial. Nobody in their right mind would give one group of children toxic chemicals and the other group a placebo.

The studies cited in this paper were mostly population studies. Basically this means that they compared children with exposure to certain toxic chemicals to a control group that was as similar as possible to the first group except that their exposure to the toxic chemicals was less.

The limitation of this kind of study is obvious. We are usually comparing children from different locations or of different backgrounds. We almost never know if we have controlled for all possible variables so that the groups are truly identical.

As a consequence it becomes important to ask how many studies come to the same conclusion. For some of the toxic chemicals, such as lead, methymercury and organophosphate pesticides, the weight of evidence is very strong. For some of the newer additions to their list of developmental neurotoxins, it is pretty clear that the chemicals have neurotoxic properties, but the significance of those effects on the developing human brain are hard to quantify at this point.

The Bottom Line:

1)     A recent review claims that there is a good scientific basis for classifying at least 12 environmental chemicals as developmental neurotoxins that are likely to reduce IQ and contribute to behavioral problems in US children. [If you would like to find out what those “Dirty Dozen” chemicals are and where they are found, click here.]

2)     The science behind the claims in this review is solid, but not iron-clad.

3)     However, there are times when we need to simply ask ourselves: “What if it were true?” The consequences of lowered IQ and developmental behavioral problems are so significant that it may not make sense to wait until we have unassailable scientific evidence before we act.

4)     We all need to be guardians of our personal environment. But, it is not easy. The “Dirty Dozen” chemicals identified in this study come from many sources:

  • Some are industrial pollutants. For those, we need lobby for better environmental regulation.
  • Some are persistent groundwater contaminants. For those we need to drink purified water whenever possible.
  • Some are insecticides and herbicides used in agriculture. For those we need to buy organic, locally grown produce when feasible.
  • Some are found in common household products and furnishings. For those we need to become educated label readers and use non-toxic products in our home whenever possible.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Tags: , , , , , , , ,

Trackback from your site.

Leave a comment

Recent Videos From Dr. Steve Chaney

READ THE ARTICLE
READ THE ARTICLE

Latest Article

Is Our Microbiome Affected By Exercise?

Posted November 6, 2018 by Dr. Steve Chaney

Microbiome Mysteries

Author: Dr. Stephen Chaney

is our microbiome affected by exerciseIn a recent post,  What is Your Microbiome and Why is it Important,  of “Health Tips From The Professor” I outlined how our microbiome, especially the bacteria that reside in our intestine, influences our health. That influence can be either good or bad depending on which species of bacteria populate our gut. I also discussed how the species of bacteria that populate our gut are influenced by what we eat and, in turn, influence how the foods we eat are metabolized.

I shared that there is an association between obesity and the species of bacteria that inhabit our gut. At present, this is a “chicken and egg” conundrum. We don’t know whether obesity influences the species of bacteria that inhabit our gut, or whether certain species of gut bacteria cause us to become obese.

Previous studies have shown that there is also an association between exercise and the species of bacteria that inhabit our gut. In particular, exercise is associated with an increase in bacteria that metabolize fiber in our diets to short chain fatty acids such as butyrate. That is potentially important because butyrate is a primary food source for intestinal mucosal cells (the cells that line the intestine). Butyrate helps those cells maintain the integrity of the gut barrier (which helps prevent things like leaky gut syndrome). It also has an anti-inflammatory effect on the immune cells that reside in the gut.

However, associations don’t prove cause and effect. We don’t know whether the differences in gut bacteria were caused by differences in diet or leanness in populations who exercised regularly and those who did not. This is what the present study (JM Allen et al, Medicine & Science In Sports & Exercise, 50: 747-757, 2018 ) was designed to clarify.  Is our microbiome affected by exercise?

 

How Was The Study Designed?

is our microbiome affected by exercise studyThis study was performed at the University of Illinois. Thirty-two previously sedentary subjects (average age = 28) were recruited for the study. Twenty of them were women and 12 were men. Prior to starting the study, the participants filled out a 7-day dietary record. They were asked to follow the same diet throughout the 12-week study. In addition, a dietitian designed a 3-day food menu based on their 7-day recall for the participants to follow prior to each fecal collection to determine species of gut bacteria.

The study included a two-week baseline when their baseline gut bacteria population was measured, and participants were tested for fitness. This was followed by a 6-week exercise intervention consisting of three supervised 30 to 60-minute moderate to vigorous exercise sessions per week. The exercise was adapted to the participant’s initial fitness level, and both the intensity and duration of exercise increased over the 6-week exercise intervention. Following the exercise intervention, all participants were instructed to maintain their diet and refrain from exercise for another 6 weeks. This was referred to as the “washout period.”

VO2max (a measure of fitness) was determined at baseline and at the end of the exercise intervention. Stool samples for determination of gut bacteria and concentrations of short-chain fatty acids were taken at baseline, at the end of the exercise intervention, and again after the washout period.

In short, this study divided participants into lean and obese categories and held diet constant. The only variable was the exercise component.

 

Is Our Microbiome Affected By Exercise?

is our microbiome affected by exercise fitnessThe results of the study were as follows:

  • Fitness, as assessed by VO2max, increased for all the participants, and the increase in fitness was comparable for both lean and obese subjects.
  • Exercise induced a change in the population of gut bacteria, and the change was comparable in lean and obese subjects.
  • Exercise increased fecal concentrations of butyrate and other short-chain fatty acids in the lean subjects, but not in obese subjects.
  • The exercise-induced changes in gut bacteria and short-chain fatty acid production were largely reversed once exercise training ceased.

The authors concluded: “These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet, and contingent on the sustainment of exercise.” [Note: To be clear, the exercise-induced changes in both gut bacteria and short-chain fatty acid production were independent of diet and contingent on the sustainment of exercise. However, only the production of short-chain fatty acids was dependent on obesity status.]

 

What Does This Study Mean For You?

is our microbiome affected by exercise gut bacteriaThere are two important take home lessons from this study.

  • With respect to our gut bacteria, I have consistently told you that microbiome research is an emerging science. This is a small study, so you should regard it as the beginning of our understanding of the effect of exercise on our microbiome rather than conclusive by itself. It is consistent with previous studies showing an association between exercise and a potentially beneficial shift in the population of gut bacteria.

The strength of the study is that it shows that exercise-induced changes in beneficial gut bacteria are probably independent of diet. However, it is the first study to look at the interaction between obesity, exercise and gut bacteria, so I would interpret those results with caution until they have been replicated in subsequent studies.

  • With respect to exercise, this may be yet another reason to add regular physical activity to your healthy lifestyle program. We already know that exercise is important for cardiovascular health. We also know that exercise increases lean muscle mass which increases metabolic rate and helps prevent obesity. There is also excellent evidence that exercise improves mood and helps prevent cognitive decline as we age.

Exercise is also associated with decreased risk of colon cancer and irritable bowel disease. This effect of exercise has not received much attention because the mechanism of this effect is unclear. This study shows that exercise increases the fecal concentrations of butyrate and other short-chain fatty acids. Perhaps, this provides the mechanism for the interaction between exercise and intestinal health.

 

The Bottom Line

A recent study has reported that:

  • Exercise induces a change in the population of gut bacteria, and the change was comparable in lean and obese subjects.
  • Exercise causes an increase in the number of gut bacteria that produce butyrate and other short-chain fatty acids that are beneficial for gut health.
  • These effects are independent of diet, but do not appear to be independent of obesity because they were seen in lean subjects but not in obese subjects.
  • The exercise-induced changes in gut bacteria and short-chain fatty acid production are largely reversed once exercise training ceases.

The authors concluded: “These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent on diet, and contingent on the sustainment of exercise.”

For more details and my interpretation of the data, read the article above.

 

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

UA-43257393-1