Can Diet Alter Your Genetic Destiny?

Written by Dr. Steve Chaney on . Posted in Food and Health, Issues, Supplements and Health

Disease Is Not Inevitable

Author: Dr. Stephen Chaney

Bad GenesMany people seem to have the attitude that if obesity [or cancer, heart disease or diabetes] runs in their family, it is their destiny. They can’t really do anything about it, so why even try?

Most of us in the field of nutrition have felt for years that nothing could be further from the truth. But our belief was based on individual cases, not on solid science. That is no longer the case.

Recent scientific advances have given us solid proof that it is possible to alter our genetic destiny. A family predisposition to diabetes, for example, no longer dooms us to the same fate.

I’m not talking about something like the discredited Blood Type Diet. I’m talking about real science. Let me start by giving you an overview of the latest scientific advances.

Can Diet Alter Your Genetic Destiny?

The answer to this question is YES, and that answer lies in a relatively new scientific specialty called nutrigenomics – the interaction between nutrition and genetics. There are three ways in which nutrition and genetics interact:

1)     Your genetic makeup can influence your nutrient requirements.

The best characterized example of this is methylene tetrahydrofolate reductase (MTHFR) deficiency.  MTHFR deficiency increases the requirement for folic acid and is associated with neural tube defects and other neurological disorders, dementia, colon cancer & leukemia.

In spite of what some blogs and supplement manufacturers would have you believe, supplementation with around 400 IU of folic acid is usually sufficient to overcome the consequences of MTHFR deficiency. 5-methylene tetrahydrofolate (also sold as methyl folate or 5-methyl folate) offers no advantage in absorption, bioavailability or physiological activity (Clinical Pharmacokinetics, 49: 535-548, 2010; American Journal of Clinical Nutrition, 79: 473-478, 2004).

This is just one example. There are hundreds of other genetic variations that influence nutrient requirements – some known and some yet unknown.

2)     A healthy diet can reduce your genetic predisposition for disease.

This perhaps the one that is easiest to understand. For conceptual purposes let us suppose that your genetic makeup were associated with high levels of inflammation. That would predispose you to heart disease, cancer and many other diseases. However, a diet rich in anti-inflammatory nutrients could reduce your risk of those diseases.

This is just a hypothetical example. I’ll give some specific examples in the paragraphs below.

3)     Diet can actually alter your genes.

This is perhaps the most interesting scientific advance in recent years. We used to think that genes couldn’t be changed. What you inherited was what you got.

Now we know that both DNA and the proteins that coat the DNA can be modified, and those modifications alter how those genes are expressed. More importantly, we now know that those modifications can be inherited.

Perhaps the best characterized chemical modification of both DNA and proteins is something called methylation. Methylation influences gene expression and is, in turn, influenced by nutrients in the diet like folic acid, vitamin B12, vitamin B6, choline and the amino acid methionine.

Again this is just the “tip of the iceberg”. We are learning more about how diet can alter our genes every day.

Examples Of How Diet Can Alter Genetic Predisposition

Mature Man - Heart Attack Heart Disease

  • Perhaps the most impressive recent study is one that looked at the effect of diet on 20,000 people who had a genetic predisposition to heart disease (PLOS Medicine, October 2011, doi/10.1371/journal.pmed.1001106).

These people all had a genetic variant 9p21 that causes a 2 fold increased risk of heart attack. The study showed that a diet rich in fruits, vegetables and nuts reduced their risk of heart attack to that of the general population.

  • Another study, the Heart Outcomes Prevention Evaluation (HOPE) study (Diabetes Care, 27: 2767, 2004; Arteriosclerosis, Thrombosis and Vascular Biology, 24: 136, 2008), looked at genetic variations in the haptoglobin gene that influence cardiovascular risk. The haptoglobin 2-2 genotype increases oxidative damage to the arterial wall, which significantly increases the risk of cardiovascular disease.

When the authors of this study looked at the effect of vitamin E, they found that it significantly decreased heart attacks and cardiovascular deaths in people with the haptoglobin 2-2 genotype, but not in people with other haptoglobin geneotypes.

  • There was also a study called the ISOHEART study (American Journal of Clinical Nutrition, 82: 1260-1268, 2005; American Journal of Clinical Nutrition, 83: 592-600, 2006) that looked at a particular genetic variation in the estrogen receptor which increases inflammation and decreases levels of HDL. As you might expect, this genotype significantly increases cardiovascular risk.

Soy isoflavones significantly decreased inflammation and increased HDL levels in this population group. But they had no    effect on inflammation or HDL levels in people with other genotypes affecting the estrogen reception.

To put this in perspective, these studies are fundamentally different from other studies you have heard about regarding nutritional interventions and heart disease risks. Those studies were looking at the effect of diet or supplementation in the general population.

These studies are looking at the effect of diet or supplementation in people who were genetically predisposed to heart disease. These studies show that genetic predisposition [to heart disease] does not have to be your destiny. You can change the outcome!

Cancer

  • A healthy diet (characterized by high intakes of vegetables, fruits, whole grain products and low intakes of refined grain products) compared with the standard American diet (characterized by high intakes of refined grain products, desserts, sweets and processed meats) results in a pattern of gene expression that is associated with lower risk of cancer.  (Nutrition Journal, 2013 12:24).
  • A healthy lifestyle (low fat diet, stress management and exercise) in men with prostate cancer causes downregulation of genes associated with tumor growth (PNAS, 105: 8369-8374).
  • Sulforaphane, a nutrient found in broccoli, turns on genes that suppress cancer.

Diabetes

  • A study reported at the 2013 meeting of the European Association for the Study of Diabetes showed that regular exercise activated genes associated with a lower risk of type 2 diabetes

Cellular Stress Response

  • A diet rich in antioxidant fruits and vegetables activates the cellular stress response genes that protect us from DNA damage, inflammation and reactive oxygen species (BMC Medicine, 2010 8:54).
  • Resveratrol, a nutrient found in grape skins and red wine, activates genes associated with DNA repair and combating reactive oxygen species while it reduces the activity of genes associated with inflammation, increased blood pressure and cholesterol production.

To put these last three examples (cancer, diabetes and cellular stress response) in perspective, they show that diet and supplementation can alter gene expression – and that those alterations are likely to decrease disease risk.

Obesity

  • Finally, an animal study suggests that maternal obesity may increase the risk of obesity in the offspring by increasing their taste preference for foods with lots of sugar and fats (Endocrinology, 151: 475-464, 2010).

The Bottom Line:

The science of nutrigenomics tells us that diet and genetics interact in some important ways:

1)     Your genetic makeup can influence your requirement for certain nutrients.

    • For example, methylene tetrahydrofolate reductase (MTHFR) deficiency increases your requirement for folic acid.
    • Contrary to what many blogs would have you believe, folic acid is just as effective as 5-methylene tetrahydrofolate (also sold as methyl folate or 5-methyl folate) at correcting MTHFR deficiency.

2)     Healthy diet and lifestyle can overcome genetic predisposition to certain diseases. The best established example at present is for people genetically predisposed to heart disease, but preliminary evidence suggests that the risk of other diseases such as diabetes and cancer are altered by your diet.

3)     Diet can actually alter gene expression – for better or worse depending on your diet. Those alterations not only affect your health, but they may affect your children’s health as well.

4)     Nutrigenomics is a young science and many of the individual studies should be considered preliminary. However, the scientific backing is become stronger every day for what many experts in the field have believed for years.

“Your genes do not have to be your destiny. Healthy diet and lifestyle can overcome a genetic predisposition to many diseases.”

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Tags: , , , , , , , ,

Trackback from your site.

Comments (5)

  • Kathleen Todd

    |

    What- about diet and neuropathy not connected to Dianetes or Chemotherapy ? Apparently a genetic type as a brother and nephew also with neuropathy not Connecticut with Diabetes or Chemo.
    Thank you, Kathleen

    Reply

    • Dr. Steve Chaney

      |

      Dear Kathleen,
      There are a number of genotypes associated with an increased risk of neuropathy. Whether diet can make a difference and the type of diet that would be effective depend on the genotype. My recommendation would be to consult with a major medical center that has a medical genetics team consisting of both medical geneticists and dietitians trained to deal with genetic diseases. We have a wonderful team at UNC Hospitals, but I’m sure other major medical centers have similar teams.
      Dr. Chaney

      Reply

  • Kenny Treece

    |

    Dr. Steve Chaney, thanks so much for your “down to earth” approach to health and wellness. There is so much misinformation out there that it is very refreshing to read your articles. Thanks again, Kenny

    Reply

  • Caroline

    |

    I understand that that people with the MTHFR gene do not have the enzyme to convert folic into the active form of folate…however, since Shaklee Corp uses biobuilding blocks their product people with this gene can convert it to folate. I know I have the gene and had my folate and B12 tested and it was in good range

    Reply

    • Dr. Steve Chaney

      |

      Dear Caroline,
      There is much misinformation about MTHFR deficiency and I plan a webinar soon to cover the topic. In the first place, the MTHFR gene is not required to convert folic acid to it’s active form. It converts one metabolite of folic acid to another metabolite. Secondly, people don’t lack the gene entirely. That would be incompatible with life. They have lower than normal activity of the gene. Thirdly, most people with “MTHFR deficiency” only have a slight decrease in enzyme activity. They simply require higher than RDA levels of folic acid to function normally. Your story is not unusual.
      Dr. Chaney

      Reply

Leave a comment

Recent Videos From Dr. Steve Chaney

READ THE ARTICLE
READ THE ARTICLE

Latest Article

High Protein Diets and Weight Loss

Posted October 16, 2018 by Dr. Steve Chaney

Do High Protein Diets Reduce Fat And Preserve Muscle?

Author: Dr. Stephen Chaney

Healthy Diet food group, proteins, include meat (chicken or turkAre high protein diets your secret to healthy weight loss? There are lots of diets out there – high fat, low fat, Paleolithic, blood type, exotic juices, magic pills and potions. But recently, high protein diets are getting a lot of press. The word is that they preserve muscle mass and preferentially decrease fat mass.

If high protein diets actually did that, it would be huge because:

  • It’s the fat – not the pounds – that causes most of the health problems.
  • Muscle burns more calories than fat, so preserving muscle mass helps keep your metabolic rate high without dangerous herbs or stimulants – and keeping your metabolic rate high helps prevent both the plateau and yo-yo (weight regain) characteristic of so many diets.
  • When you lose fat and retain muscle you are reshaping your body – and that’s why most people are dieting to begin with.

So let’s look more carefully at the recent study that has been generating all the headlines (Pasiakos et al, The FASEB Journal, 27: 3837-3847, 2013).

The Study Design:

This was a randomized control study with 39 young (21), healthy and fit men and women who were only borderline overweight (BMI = 25). These volunteers were put on a 21 day weight loss program in which calories were reduced by 30% and exercise was increased by 10%. They were divided into 3 groups:

  • One group was assigned a diet containing the RDA for protein (about 14% of calories in this study design).
  • The second group’s diet contained 2X the RDA for protein (28% of calories)
  • The third group’s diet contained 3X the RDA for protein (42% of calories)

In the RDA protein group carbohydrate was 56% of calories, and fat was 30% of calories. In the other two groups the carbohydrate and fat content of the diets was decreased proportionally.

Feet_On_ScaleWhat Did The Study Show?

  • Weight loss (7 pounds in 21 days) was the same on all 3 diets.
  • The high protein (28% and 42%) diets caused almost 2X more fat loss (5 pounds versus 2.8 pounds) than the diet supplying the RDA amount of protein.
  • The high protein (28% and 42%) diets caused 2X less muscle loss (2.1 pounds versus 4.2 pounds) than the diet supplying the RDA amount of protein.
  • In case you didn’t notice, there was no difference in overall results between the 28% (2X the RDA) and 42% (3X the RDA) diets.

Pros And Cons Of The Study:

  • The con is fairly obvious. The participants in this study were all young, healthy and were not seriously overweight. If this were the only study of this type one might seriously question whether the results were applicable to middle aged, overweight coach potatoes. However, there have been several other studies with older, more overweight volunteers that have come to the same conclusion – namely that high protein diets preserve muscle mass and enhance fat loss.
  • The value of this study is that it defines for the first time the upper limit for how much protein is required to preserve muscle mass in a weight loss regimen. 28% of calories is sufficient, and there appear to be no benefit from increasing protein further. I would add the caveat that there are studies suggesting that protein requirements for preserving muscle mass may be greater in adults 50 and older.

The Bottom Line:

1)    Forget the high fat diets, low fat diets, pills and potions. High protein diets (~2X the RDA or 28% of calories) do appear to be the safest, most effective way to preserve muscle mass and enhance fat loss in a weight loss regimen.

2)     That’s not a lot of protein, by the way. The average American consumes almost 2X the RDA for protein on a daily basis. However, it is significantly more protein than the average American consumes when they are trying to lose weight. Salads and carrot sticks are great diet foods, but they don’t contain much protein.

3)     Higher protein intake does not appear to offer any additional benefit – at least in young adults.

4)     Not all high protein diets are created equal. What some people call high protein diets are laden with saturated fats or devoid of carbohydrate. The diet in this study, which is what I recommend, had 43% healthy carbohydrates and 30% healthy fats.

5)    These diets were designed to give 7 pounds of weight loss in 21 days – which is what the experts recommend. There are diets out there promising faster weight loss but they severely restrict calories and/or rely heavily on stimulants, they do not preserve muscle mass, and they often are not safe. In addition they are usually temporary.  I do not recommend them.

6)    This level of protein intake is safe for almost everyone. The major exception would be people with kidney disease, who should always check with their doctor before increasing protein intake. The only other caveat is that protein metabolism creates a lot of nitrogenous waste, so you should drink plenty of water to flush that waste out of your system. But, water is always a good idea.

7)     The high protein diets minimized, but did not completely prevent, muscle loss. Other studies suggest that adding the amino acid leucine to a high protein diet can give 100% retention of muscle mass in a weight loss regimen – but that’s another story for another day.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

UA-43257393-1