How Much Omega-3s Are Best For Blood Pressure?

What Does This Study Mean For You?

Author: Dr. Stephen Chaney

high blood pressureI am continuing my series on recent omega-3 breakthroughs. Today I am going to cover a recent systematic review and meta-analysis (X Zhang et al, Journal of the American Heart Association, 11: e025071, 2022) that analyzed 71 double blind, placebo-controlled clinical studies with 4,973 subjects to determine the optimal dose of omega-3s needed to lower blood pressure.

But first, I will cover why this study is so important.

High blood pressure is called a “silent killer”. For most of us our blood pressure creeps up year after year, decade after decade. Factors like inactivity, obesity, smoking, poor diet, and excess alcohol consumption speed the increase.

Unfortunately, the symptoms of high blood pressure – things like headaches, anxiety, fatigue, and blurred vision – are easy to ignore or confuse with other health problems. And if these symptoms are ignored long enough, the result can be sudden death due to a stroke or heart attack.

Alternately, the consequence could be things like congestive heart failure, kidney failure, vision loss, and memory loss that change your quality of life forever. And once the genie is out of the bottle, it can never be put back again. The damage is permanent.

Omega-3s are often recommended for keeping blood pressure in the normal range. In fact, in 2019 the FDA approved a qualified health claim stating, “Consuming eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) omega-3 fatty acids in food or dietary supplements may reduce the risk of hypertension (high blood pressure) and coronary heart disease.”

But the amount of omega-3s needed to reduce the risk of high blood pressure is uncertain. Previous studies have come up with conflicting results. That is the question the study I will discuss today was designed to answer.

How Was This Study Done?

Clinical StudyThe investigators included 71 studies published between 1987 and 2020 with a total of 4,793 subjects ranging in age from 22 to 86 years in their systematic review and meta-analysis. The studies were all randomized, placebo-controlled trials looking at the effectiveness of omega-3 intake (primarily in the form of food or supplements containing both EPA and DHA) at lowering blood pressure. The placebo used in these studies was olive oil or other vegetable oils.

The studies included in this meta-analysis:

  • Included omega-3 intake from both diet (mackerel, salmon, trout, or tuna) and supplements (fish oil, algal oil, or purified omega-3 ethyl esters).
  • Were conducted in populations from Europe, North America, Australia and other Pacific islands, and Asia.
  • Included subjects with normal blood pressure as well as those with high blood pressure.
  • Ranged in length from 5 to 52 weeks (the average was 10 weeks).
  • Included approximately equal numbers of men and women.

The meta-analysis excluded studies that:

  • Lacked a placebo.
  • Lasted less than 4 weeks.
  • Included blood pressure medications.
  • Included individuals with preexisting cardiovascular events.

The data from these trials was analyzed by a statistical method called a 1-stage cubic spline regression model. This is a recently developed statistical method which the investigators stated was superior to the statistical methods used in previous studies because it reduces the likelihood the results are influenced by investigator bias.

How Much Omega-3s Are Best For Blood Pressure?

Fish Oil and Blood PressureWhen the investigators combined the data from all 71 studies:

  • The maximum reduction in both systolic and diastolic blood pressure was observed between 2g/d and 3 g/d.
  • The dose response was non-linear. Doses above 3 g/d offered no additional benefit.

When the investigators looked at subgroups within the studies:

  • Reduction in blood pressure was seen in both subjects with normal blood pressure and those with high blood pressure.
    • However, reduction in blood pressure and the dose response were different in the two groups.
      • In subjects with normal blood pressure the dose response was non-linear with the optimum reduction between 2 and 3 g/d.
      • In subjects with high blood pressure the reduction in blood pressure was greater and the dose response was linear. The authors recommended a dose ≤ 3 g/d EPA + DHA for people with high blood pressure.
  • Subjects with hyperlipidemia had a greater reduction in blood pressure than subjects with normal lipid levels, and the dose-response was linear.
  • Subjects over the age of 45 had a greater reduction in blood pressure than subjects under the age of 45, and the dose response was linear.
  • There were no significant differences between:
    • Diet versus supplementation.
    • Type of omega-3 supplement (natural fish oil versus purified ethyl ester).
    • Sex.

The authors concluded, “This dose-response meta-analysis demonstrates that the optimal combined intake of omega-3 fatty acids for blood pressure lowering is likely between 2 g/d and 3 g/d. Doses of omega-3 fatty acid intake above the recommended 3 g/d may be associated with additional benefits in lowering blood pressure among groups at high risk of cardiovascular disease.”

I should probably explain the reasoning behind this conclusion.

  • 79% of the studies included in this meta-analysis were performed with subjects who had normal blood pressure. This group had a non-linear reduction in blood pressure with an optimal reduction between 2 and 3 g/d EPA + DHA.
    • Because of its size this group exerted a major influence on the results, which explains why the average results for the entire group showed a non-linear reduction in blood pressure with an optimal reduction between 2 and 3 g/d EPA + DHA.
    • Subjects with normal blood pressure and normal lipid levels are at low risk of cardiovascular disease. The high-risk groups (high blood pressure, high cholesterol and/or triglyceride levels, and over 45) all had a linear dose response suggesting that doses above 3 g/d EPA + DHA may be optimal.

The authors also said, “We found associations [between omega-3 intake and blood pressure] among both hypertensive (high blood pressure) and nonhypertensive (normal blood pressure) groups, suggesting that omega-3 fatty acids could be beneficial for controlling blood pressure even before the onset of hypertension.

This means that the intake of omega3 fatty acids could have implications on a person’s future risk of stroke, ischemic heart disease, and all-cause mortality.”

In other words, they are saying their data suggests that EPA + DHA intakes in the 2-3 g/d range may prevent high blood pressure and the effects it can have on our health.

What Does This Study Mean For You?

Question MarkThe authors of this study claim their data support a dose of 2-3 mg/d of EPA + DHA to prevent a future increase in blood pressure and all its associated health consequences. They also say that an EPA+ DHA dose ≥ 3g/d may be optimal for people who already have high blood pressure and/or other risk factors for heart disease.

I am not an expert on statistics, so I cannot evaluate the author’s claim that their statistical method was superior to the methods used in earlier studies that gave conflicting results.

However, their results are consistent with recommendations of several major health and government agencies.

  • For example, the European Food Safety Authority has said, “An intake of EPA and DHA of ~3 g/d is required to bring out the claimed hypotensive (blood pressure lowering) effect”.
  • The FDA has approved qualified health claims stating that consuming EPA and DHA in foods or dietary supplements may reduce the risk of hypertension (high blood pressure) and coronary heart disease but did not recommend a dose to achieve these results.
  • The American Heart Association has recommended ~ 1 g/d of EPA + DHA for patients with documented coronary heart disease and 2–4 g/day of EPA + DHA to lower triglycerides.
  • And the American Heart Association features this article on their website with the headline, “Consuming about 3 grams of omega-3 fatty acids a day may lower blood pressure.”

When we contrast that with the fact that the average American gets less than 100 mg/d of EPA + DHA from their diet it is obvious that many Americans would likely benefit from increasing the amount of EPA and DHA in their diet.

The Rest Of The Story

ProfessorThere are four additional points I would like to make:

  • In trying to explain the differences between dose response in high and low risk subjects, the authors said, “There could be mechanistic differences in bioavailability and efficacy of omega-3 fatty acid intake in these populations.”

In last week’s “Health Tips From the Professor” article I reviewed a study that measured individual differences in the utilization of EPA and DHA and concluded that a blood measurement called Omega-3 Index was a more reliable indicator of health outcomes than the dose of omega-3s consumed.

For that reason, I recommend personalizing your dose of EPA + DHA to reach an Omega-3 Index of 8%, which appears to be optimal for heart health and provides significant blood pressure reduction. This is an iterative process which will require frequent measurement of your omega-3 index and adjustment of EPA + DHA dose until you find the level of EPA + DHA supplementation you need to achieve an Omega-3 Index of 8%.

  • This study and similar studies measure the health benefits of the long chain omega-3 fatty acids EPA and DHA. Short chain omega-3s from nuts, seeds, and plant oils are healthy, but their conversion to EPA and DHA is very inefficient.
  • Both the FDA and American Heart Association recommend that doses of EPA + DHA above 3 g/d should be taken under a physician’s supervision because high doses can cause bleeding problems.

This is another reason for basing your intake of EPA + DHA on Omega-3 Index rather than on the dose recommended by a clinical study. Based on dozens of clinical studies, an Omega-3 Index of 8% appears to be safe unless you have a bleeding disorder or are on a blood-thinning medication (see below).

  • If you are on a medication to thin your blood, you should consult with your physician before increasing or decreasing your omega-3 intake because changes in dietary omega-3s can affect the optimal dose of medication they prescribe.

The Bottom Line 

A recent study looked at the dose of EPA + DHA needed to lower blood pressure.

  • The study concluded that a dose of 2-3 mg/d of EPA + DHA was optimal for preventing a future increase in blood pressure and all its associated health consequences.
  • It also concluded that an EPA+ DHA dose ≥ 3g/d was optimal for lowering blood pressure in people who already have high blood pressure and/or other risk factors for heart disease.
  • Based on previous studies, I recommend optimizing your omega-3 index rather than relying on a dose of EPA + DHA that may not be right for you.

For more details about this study and what it means to you read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance 

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Do Omega-3s Improve Recovery From A Heart Attack?

Where Do We Go From Here? 

Author: Dr. Stephen Chaney 

Omega-3s And Heart DiseaseDespite years of controversy, the benefits of omega-3s remain an active area of research. Over the next few weeks, I will review several groundbreaking omega-3 studies. This week I will focus on omega-3s and heart health.

I don’t need to tell you that the effect of omega-3s on heart health is controversial. One month a new study is published showing an amazing health benefit from omega-3 supplementation. A month or two later another study comes up empty. It finds no benefit from omega-3 supplementation.

That leads to confusion. On one hand you have websites and blogs claiming that omega-3s are a magic elixir that will cure all your ills. On the other hand, there are the naysayers, including many health professionals, claiming that omega-3 supplements are worthless.

I have discussed the reasons for the conflicting results from omega-3 clinical studies in previous issues of “Health Tips From the Professor”. You can go to https://chaneyhealth.com/healthtips/ and put omega-3s in the search box to read some of these articles.

Or if you prefer, I have also put together a digital download I call “The Omega-3 Pendulum” which briefly summarizes all my previous articles. It’s available on my Chaney Health School Teachable website.

Today I will discuss a study (B Bernhard et al, International Journal of Cardiology, 399; 131698, 2024) that asks whether 6 months of high dose omega-3 supplementation following a heart attack reduced the risk of major cardiovascular events over the next 6.6 years.

You might be wondering why the study didn’t just look at the effect of continuous omega-3 supplementation for 6 years following a heart attack. There are two very good reasons for the design of the current study.

1) The investigators wanted to do a double blind, placebo controlled clinical trial, the gold standard for clinical studies. However, that kind of study is impractical for a multi-year clinical trial. It would be prohibitively expensive, and patient compliance would be a big problem for a study that long.

2) The months immediately after a heart attack are critical in determining the long-term recovery of that patient. There is often a period of massive inflammation following a heart attack. And that can lead to further damage to the heart and reclosing of the arteries leading to the heart, both of which increase the risk of future adverse cardiac events.

Previous studies have shown that high dose omega-3s immediately following a heart attack can reduce inflammation and damage to the heart. However, those studies did not determine whether the cardioprotective effect of omega-3 supplementation immediately after a heart attack lead to improved long-term outcomes, something this study was designed to determine.

How Was The Study Done?

clinical studyThe investigators enrolled 358 patients who had suffered a heart attack from three Boston area medical centers between June 2008 and August 2012.

The patient demographics were:

  • Gender = 70% female.
  • Average age = 59
  • Average BMI = 29 (borderline obese).
  • Patients with high blood pressure = 64%
  • Patients with diabetes = 25%.

The patients were divided into two groups. The first group received capsules providing 4 gm/day of EPA, DHA, and other naturally occurring omega-3 fatty acids. The other group received a placebo containing corn oil. This was a double-blind study. Neither the patients nor the investigators knew which patients received the omega-3 fatty acids and which ones received the placebo.

The patients were instructed to take their assigned capsules daily for 6 months. At the beginning of the study, blood samples were withdrawn to determine the percentage of omega-3s in the fatty acid content of their red cell membranes (something called omega-3 index). Patients were also tested for insulin resistance and given a complete cardiovascular workup. This was repeated at the end of the 6-month study.

[Note: Previous studies have shown that an omega-3 index of 4% or lower is associated with high risk of heart disease, and an omega-3 index of 8% or above is associated with a low risk of heart disease.]

At 2-month intervals the patients were contacted by staff using a scripted interview to determine compliance with the protocol and their cardiovascular health. Once the 6 months of omega-3 supplementation was completed, the patients were followed for an additional 6.6 years. They were contacted every 6 months for the first 3 years and yearly between 3 years and 6 years.

The investigators quantified the number of major cardiac events (defined as recurrent heart attacks, the necessity for recurrent coronary artery bypass grafts, hospitalizations for heart failure, and all-cause deaths) for each patient during the 6.6-year follow-up period.

Patients in both groups were treated according to current “standard of care” protocols which consisted of diet and exercise advice and 5-6 drugs to reduce future cardiovascular events.

Do Omega-3s Improve Recovery From A Heart Attack?

heart attacksWhen the investigators looked at the incidence of adverse cardiac events during the 6.6-year follow-up period, there were three significant findings from this study.

1) There were no adverse effects during the 6-month supplementation period with 4 gm/day of omega-3s. This is significant because a previous study with 4 gm/day of high purity EPA had reported some adverse effects which had led some critics to warn that omega-3 supplementation was dangerous. More study is needed, but my hypothesis is that this study did not have side effects because it used a mixture of all naturally occurring omega-3s rather than high purity EPA only. 

However, this could also have been because of the way patients were screened before entering this study. I will discuss this in more detail below.

2) When the investigators simply compared the omega-3 group with the placebo group there was no difference in cardiovascular outcomes between the two groups. This may have been because this study faced significant “headwinds” that made it difficult show any benefit from supplementation. I call them “headwinds” rather than design flaws because they were unavoidable. 

    • It would be unethical to deny the standard of care to any patient who has just had a heart attack. That means that every patient in a study like this will be on multiple drugs that duplicate the beneficial effects of omega-3 fatty acids – including lowering blood pressure, lowering triglycerides, reducing inflammation, and reducing plaque buildup and blood clot formation in the coronary arteries.

That means that this study, and studies like it, cannot determine whether omega-3 fatty acids improve recovery from a heart attack. They can only ask whether omega-3 fatty acids have any additional benefit for patients on multiple drugs that duplicate many of the effects of omega-3 fatty acids. That significantly reduces the risk of a positive outcome.

    • As I mentioned above, it would have been impractical to continue providing omega-3 supplements and placebos during the 6.6-year follow-up.

And the study was blinded, meaning that the investigators did not know which patients got the omega-3s and which patients got the placebo. That meant the investigators could not advise the omega-3 supplement users to continue omega-3 supplementation during the follow-up period.

Consequently, the study could only ask if 6 months of high-dose omega-3 supplementation had a measurable benefit 6.6 years later. I, for one, would be more interested in knowing whether lower dose omega-3 supplementation continued for the duration of this study reduced the risk of major coronary events.good news

3) When the investigators compared patients who achieved a significant increase in their omega-3 index during the 6-month supplementation period with those who didn’t, they found a significant benefit of omega-3 supplementation.

This was perhaps the most significant finding from this study.  

If the investigators had stopped by simply comparing omega-3 users to the placebo, this would have been just another negative study. We would be wondering why it did not show any benefit of omega-3 fatty acid supplementation.

However, these investigators were experts on the omega-3 index. They knew that there was considerable individual variability in the efficiency of omega-3 uptake and incorporation into cell membranes. In short, they knew that not everyone taking a particular dose of omega-3s will achieve the same omega-3 index.

And that is exactly what they saw in this study. All the patients in the 6-month omega-3 group experienced an increase in omega-3 index, but there was considerable variability in how much the omega-3 index increased over 6 months.

So, the investigators divided the omega-3 group into two subgroups – ones whose omega-3 index increased by ≥ 5 percentage points (sufficient to move those patients from high risk of heart disease to low risk) and ones whose omega-3 index increased by less than 5 percentage points.

When the investigators compared patients with ≥ 5% increase in omega-3 index to those with <5% increase in omega-3 index:

  • Those with an increase in omega-3 index of ≥ 5% had a 2.9% annual risk of suffering major adverse cardiac events compared to a 7.1% annual risk for those with an increase of <5%.
  • That’s a risk reduction of almost 60%, and it was highly significant.

The authors concluded, “In a long-term follow-up study, treatment with [high dose] omega-3s for 6 months following a heart attack did not reduce adverse cardiac events compared to placebo. However, those patients who were treated with omega-3s and achieved ≥ 5% rise in omega-3 index experienced a significant reduction of adverse cardiac events after a median follow-up period of 6.6 years…Additional studies are needed to confirm this association and may help identify who may benefit from omega-3 fatty acid treatment following a heart attack.”

What Does This Study Mean For You? 

Questioning WomanI should start by saying that I do not recommend 4 gm/day of omega-3 fatty acids following a heart attack without checking with your doctor first.

  • If you are on a blood thinning medication, the dose of either the medication or the omega-3 supplement may need to be reduced to prevent complications due to excess bleeding.
  • In addition, the investigators excluded patients from this study who might suffer adverse effects from omega-3 supplementation. This is a judgement only your doctor can make.

With that advice out of the way, the most important takeaway from this study is that uptake and utilization of omega-3 fatty acids varies from individual to individual.

The omega-3 index is a measure of how well any individual absorbs and utilizes dietary omega-3s. And this study shows that the omega-3 index is a much better predictor of heart health outcomes than the amount of omega-3 fatty acids a person consumes.

This is not surprising because multiple studies have shown that the omega-3 index correlates with heart health outcomes. It may also explain why many studies based on omega-3 intake only have failed to show a benefit of omega-3 supplementation.

Vitamin D supplementation is a similar story. There is also considerable variability in the uptake of vitamin D and conversion to its active form in the body. 25-hydroxy vitamin D levels in the blood are a marker for active vitamin D. For that reason, I have long recommended that you get your 25-hydroxy vitamin D level tested with your annual physical and, with your doctor’s help, base the dose of the vitamin D supplement you use on that test.

This study suggests that we may also want to request an omega-3 index test and use it to determine the amount of supplemental omega-3s we add to our diet.

Where Do We Go From Here?

Where Do We Go From HereThe idea that we need to use the omega-3 index to determine the effectiveness of the omega-3 supplement we use is novel. As the authors suggest, we need more studies to confirm this effect. There are already many studies showing a correlation of omega-3 index with heart health outcomes. But we need more double blind, placebo-controlled studies like this one.

More importantly, we need to understand what determines the efficiency of supplemental fatty acid utilization so we can predict and possibly improve omega-3 utilization. The authors suggested that certain genetic variants might affect the efficiency of omega-3 utilization. But the variability of omega-3 utilization could also be affected by:

  • Diet, especially the presence of other fats in the diet.
  • Metabolic differences due to obesity and diseases like diabetes.
  • Gender, ethnicity, and age.
  • Design of the omega-3 supplement.

We need much more research in these areas, so we can personalize and optimize omega-3 supplementation on an individual basis.

The Bottom Line 

A recent study asked whether high dose omega-3 supplementation for 6 months following a heart attack reduced major cardiac events during the next 6.6 years.

  • When they simply compared omega-3 supplementation with the placebo there was no effect of omega-3 supplementation on cardiac outcomes.
  • However, when they based their comparison on the omega-3 index (a measure of how efficiently the omega-3s were absorbed and incorporated into cell membranes), the group with the highest omega-3 index experienced a 60% reduction in adverse cardiac events over the next 6.6 years.

This is consistent with multiple studies showing that the omega-3 index correlates with heart health outcomes.

More importantly, this study shows there is significant individual variation in the efficiency of omega-3 absorption and utilization. It also suggests that recommendations for omega-3 supplementation should be based on the omega-3 index achieved rather than the dose or form of the omega-3 supplement.

For more information on this study and what it means for you read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

 ______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Do Omega-3s Reduce Cognitive Decline?

Should You Supplement With Omega-3s?

Author: Dr. Stephen Chaney 

Cognitive-DeclineDo omega-3s reduce cognitive decline, or is this another nutrition myth?

There is certainly good reason to believe that the long chain omega-3s EPA and DHA are good for brain health.

  • DHA is an essential part of the membrane that coats our neurons. As such, it is a major component of our brains and plays an important role in its structural integrity.
  • While EPA is not found in the brain it reduces inflammation and improves blood flow to the brain, both of which are important for brain health.

But the role of DHA and EPA in reducing cognitive decline remains controversial. Some studies strongly support their role in slowing cognitive decline while other studies find no effect.

So, the question remains, “Do omega-3s reduce cognitive decline or not?”

The study (B-Z Wei et al, American Journal of Clinical Nutrition, 117: 1096-1109, 2023) I will review today was designed to answer that question.

This study supports the hypothesis that omega-3s, especially DHA and EPA, reduce cognitive decline and Alzheimer’s disease. But it also raises several questions that need to be resolved by future studies.

Why Is The Effect Of Omega-3s On Cognitive Decline Controversial?

ArgumentWhy is it so difficult to come up with definitive answers about whether omega-3s reduce cognitive decline? It is probably because the relationship between omega-3s and brain health is complex. For example:

  • Because omega-3’s beneficial effects are widely publicized, many people are already consuming adequate amounts of omega-3s. A supplement study that does not measure the omega-3 status of participants at the beginning of the study and does not focus on participants with inadequate omega-3 status is doomed to failure.
  • Omega-3s may benefit older people more than younger people. A study that is not large enough to measure the effect of omega-3s on both groups is doomed to failure.
  • The APOE ɛ4 genotype is associated with an increased risk of cognitive decline and Alzheimer’s. Some studies suggest omega-3s are more beneficial for people with the APOE ɛ4 genotype, while other studies come to the opposite conclusion. This is a critical variable that needs to be resolved.
  • The ability of DHA to cross the blood-brain barrier and accumulate in our brain may be influenced by our genetics, especially our APOE ɛ4 status, and adequate levels of other nutrients, especially B vitamins. Unless studies are large enough to separate out these variables, they are doomed to failure. This study suggests accumulation of DHA in the brain is a critical variable that needs to be resolved.
  • Multiple studies suggest that higher doses of omega-3s are more effective at reducing cognitive decline than low doses of omega-3s. This study confirms that effect and identifies a threshold dose that is needed to provide measurable benefits. Studies providing supplemental omega-3s at doses below that threshold are likely to fail. And meta-analyses that combine low dose studies with high dose studies are also likely to come up empty.
  • Finally, people who take omega-3s for years are likely to benefit more than those who take omega-3s for just a few months. Again, this study confirms that effect, which means that studies involving short-term supplementation with omega-3s are likely to fail. And meta-analyses that combine short-term and long-term studies are likely to come up empty.

With so many potential pitfalls, it is easy to understand why many studies come up empty, and the effect of omega-3s on cognitive decline remains controversial.

How Was This Study Done?

clinical studyThis study consisted of two parts:

Part 1 used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The ADNI study is a multicenter study designed to develop clinical, imaging, genetic, and biochemical markers for early detection and tracking of Alzheimer’s Disease.

Participants undergo standardized neuroimaging, psychological assessments, in-person interviews for medical history, and cognitive evaluations on entry into the study and at the end of the study.

This study followed a cohort of 1135 participants (average age = 73, 46% females) without dementia at entry into the study for 6 years.

Omega-3 supplement use was determined based on a questionnaire at the beginning of the study. Participants who used omega-3 supplements for over a year were considered omega-3 users. They were further divided into medium-term users (1-9 years) and long-term users (>10 years).

Alzheimer’s Disease was diagnosed by neurologists based on brain scans, cognitive scores, and the ability to live independently.

Part 2 was a meta-analysis of 31 studies with 103,651 participants. The studies included in the meta-analysis all:

  • Measured the relationship of omega-3 intake with the risk of Alzheimer’s Disease, all-cause dementia, or cognitive decline.
  • Were cohort studies (studies that follow a group of people over time) or case control studies (studies that compare people who develop a disease with those who do not).
  • Provided risk estimates or data that could be used to calculate risk.
  • Were original publications, not reviews or meta-analyses.

Do Omega-3s Reduce Cognitive Decline?

omega 3 supplementsThe results from Part 1 (data from the ADNI study) were as follows:

  • Omega-3 supplement users had a 37% lower risk of developing Alzheimer’s Disease than non-users.
  • Long-term (>10 years) omega-3 supplement users fared even better. They had a 64% lower risk of developing Alzheimer’s Disease than non-users.
  • When they broke the results for long-term omega-3 supplement users into subgroups:
    • Males (67% risk reduction) benefitted more than females (50% risk reduction).
    • People over 65 (65% risk reduction) benefited more than those under 65 (22% risk reduction).
    • People with the APOE ɛ4 genotype (71% risk reduction) benefitted more than those who were APOE ɛ4 negative (55% risk reduction).

The results from Part 2 (data from the meta-analysis) were as follows:

  • Dietary omega-3 intake lowered the risk of cognitive decline by 9%.
    • People with the APOE ɛ4 genotype fared better (17% risk reduction).
    • Their data suggested that a threshold of 1 gm/day omega-3s was needed before significant risk reduction was seen.
  • Dietary DHA intake lowered the risk of dementia by 27% and Alzheimer’s Disease by 24%.
  • Each 100 mg/day increase in DHA and EPA was associated with a significant reduction in the risk of cognitive decline (8% for DHA and 9.9% for EPA).

The authors concluded that,

1) “Long-term omega-3 supplementation may reduce risk of Alzheimer’s Disease; and

2) Dietary omega-3 fatty acid intake, especially DHA, may lower risk of dementia or cognitive decline…

3) However, further investigation is needed to understand the gene environment interactions involved in…[these effects of omega-3 fatty acids].”

Should You Supplement With Omega-3s?

QuestionsThis study provides strong support for the hypothesis that omega-3 supplementation reduces the risk of cognitive decline, dementia, and Alzheimer’s Disease as we age. It also suggests that a dose of 1 gram/day may be needed to obtain a significant benefit.

However, it also highlights the difficulty in designing definitive experiments to test this hypothesis. This study shows that gender, age, genetics (especially the APOE ɛ4 genotype), type of omega-3s, dosage, and duration of supplementation all exert a significant influence on the effect of omega-3s on cognitive decline.

It is extremely difficult to design a study that optimizes all these variables, which almost guarantees that the effect of omega-3s on cognitive decline will remain controversial for the foreseeable future.

However, omega-3s lower blood pressure, lower triglycerides, reduce inflammation and are heart-healthy. And the threshold for all these effects is around 1 gram/day or more. If omega-3s also reduce cognitive decline, you can consider that a side-benefit.

The Bottom Line 

The role of omega-3s in reducing cognitive decline remains controversial. Some studies strongly support their role in slowing cognitive decline while other studies find no effect.

So, the question remains, “Do omega-3s reduce cognitive decline or not?”

A recent study was designed to answer that question. Among other things the study showed:

  • Omega-3 supplement users had a 37% lower risk of developing Alzheimer’s Disease than non-users.
  • Long-term (>10 years) omega-3 supplement users fared even better. They had a 64% lower risk of developing Alzheimer’s Disease than non-users.
  • Dietary DHA intake lowered the risk of dementia by 27% and Alzheimer’s Disease by 24%.
  • Each 100 mg/day increase in DHA and EPA was associated with a significant reduction in the risk of cognitive decline (8% for DHA and 9.9% for EPA).
  • The threshold for observing a significant effect of omega-3s on cognitive decline was around 1 gram/day.

This study provides strong support for the hypothesis that omega-3 supplementation reduces the risk of cognitive decline, dementia, and Alzheimer’s Disease as we age. It also suggests that a dose of 1 gram/day may be needed to obtain a significant benefit.

However, it also highlights the difficulty in designing definitive experiments to test this hypothesis. This study shows that gender, age, genetics (especially the APOE ɛ4 genotype), type of omega-3s, dosage, and duration of supplementation all exert a significant influence on the effect of omega-3s on cognitive decline.

It is extremely difficult to design a study that optimizes all these variables, which almost guarantees that the effect of omega-3s on cognitive decline will remain controversial for the foreseeable future.

However, omega-3s lower blood pressure, lower triglycerides, reduce inflammation and are heart-healthy. And the threshold for all these effects is around 1 gram/day or more. If omega-3s also reduce cognitive decline, you can consider that a side-benefit.

For more information on this study read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ___________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 

 

Should Athletes Be Taking Omega-3s?

Can Omega-3s Protect Your Brain?

Author: Dr. Stephen Chaney 

Contact sports like football and soccer can be an athlete’s ticket to fame and fortune. That is a powerful motivator. But many elite athletes in contact sports pay a terrible price after their playing days are over.

Repeated head trauma can lead to a condition called Chronic Trauma Encephalopathy or CTE. In CTE, a protein called Tau forms clumps that spread through the brain, killing brain cells. Eventually, this can lead to irrational behavior and/or early-onset Alzheimer’s, which is, indeed, a terrible price to pay for their brief moment in the spotlight.

The NCAA is aware of the damaging effects of repeated head trauma and are experimenting with rule changes and improvements to protective head gear to reduce it. But, given the pressures of college teams to win at all costs, it will be impossible to completely eliminate head trauma from contact sports.

So, it is important to ask, “What else we can do?” Several studies have suggested that omega-3s may mitigate the damaging effect of repeated head trauma. For example:

  • The omega-3s DHA and EPA are metabolized to molecules called resolvins and protectins, which protect brain tissue from oxidative stress and help restore damaged brain tissue.
  • DHA and EPA also reduce the inflammation associated with brain injury, so the brain can heal faster.
  • DHA and EPA boost the level of a protein called BDNF in the brain. It helps trigger the production of new brain cells, which also aids in the recovery from brain injury.
  • Finally, some medical clinics have reported that high dose omega-3s help speed the recovery from severe head trauma.
  • This is concerning because omega-3s are largely missing from the diet of college athletes.

This raises the question, “Should athletes be taking omega-3s?”omega 3 supplements

The kinds of studies mentioned above suggest that DHA and EPA might help protect athletes from the damaging effects of repeated head trauma, but it is difficult to prove:

  • If a patient comes into a clinic with severe brain trauma, the symptoms are obvious. And if omega-3s speed recovery it will become apparent in weeks or months. This effect is easy to measure.
  • On the other hand, the effects of repeated, minor head trauma on a highly trained athlete are often not apparent until decades later. Therefore, any protective effects of omega-3s would also not become apparent for decades. Clinical studies don’t last that long.

Because of this, current research focuses on markers of brain damage such as neurofilament light chain or Nf-L. Nf-L is a neuronal protein that is released into the bloodstream by dying neurons. It is widely considered to be an early marker for neurodegenerative diseases such as those seen in former college football players. Previous studies have shown:

  • Nf-L blood levels increase during the season for NCAA-level college football players.
  • College football players have a very low omega-3 index, a measure of omega-3 status.
  • DHA supplementation reduces Nf-L levels in college football players.

With this in mind, the authors of this study (JL Heileson et al, Journal of the International Society of Sports Nutrition 18:65, 2021) looked at the effect of a high-dose, comprehensive omega-3 supplement on Nf-L levels in the blood of NCAA football players during the playing season.

How Was This Study Done?

clinical studyVolunteers from two geographically distinct NCAA football teams were recruited for this study. One team (n=31) was given a daily high-dose omega-3 supplement providing 2,000 mg of DHA, 560 mg of EPA, and 320 mg of DPA starting during pre-season (fall) practices and continuing through the entire season. Compliance with the supplement regimen was 93%.

Volunteers from the other team (n=35) received no supplements and served as a control.

Participants from both teams were advised which foods were high in omega-3s and were asked to limit servings to no more than 2 per week for the duration of the study.

Players were excluded from the study if they:

  • Were on long-term (>20 days) anti-inflammatory therapy.
  • Were using fish oil supplements.
  • Ate more than two servings of fish per week.
  • Were on medications to control blood pressure or blood lipid levels.

Blood samples were drawn 7 days before pre-season practice, at the end of pre-season practice, 3 times during the season, and at the end of the season (a total of 6 blood draws).

The blood samples were analyzed for Nf-L, a marker of brain injury, and Omega-3 Index, a measure of omega-3 status.

Should Athletes Be Taking Omega-3s?

As I stated above, compliance with the supplementation regimen was excellent (93%) and this was reflected in the blood levels of long-chain omega-3s. Between the first and last blood sample drawn:

  • DHA and EPA levels increased 2-fold.
  • DPA levels, on the other hand, decreased slightly.
    • This suggests that the beneficial effects of omega-3 supplementation were primarily due to DHA and EPA. I will discuss the implications of this below.
  • The omega-3 index increased from 4.3%, which is considered poor, to 7.4%, which is considered near optimal.

The effect of omega-3 supplementation on Nf-L levels was striking:

  • In the control team (no supplementation) Nf-L levels increased 1.5-fold during the pre-season practices and remained elevated throughout the regular season.
  • In the team receiving omega-3 supplementation there was no significant increase in Nf-L levels.

The authors of the study concluded, “These findings suggest a…neuroprotective effect of combined EPA+DPA+DHA omega-3 fatty acid supplementation in American-style football athletes.”

The authors went on to say, “Similar elevations of Nf-L have been reported with RHI [repeated head injuries] in other contact sport athletes. These data suggest that those other contact sports athletes may also benefit from omega-3 supplementation…”

So, let’s return to the original question, “Should athletes be taking omega-3s?” Here is my take on the study:

  • The conclusions of the authors are appropriately cautious. This study shows that omega-3 supplementation reduces an indicator of possible brain damage (Nf-L), but the actual symptoms of brain damage don’t appear for decades.
    • Therefore, this study suggests, but doesn’t prove, that omega-3 supplementation may reduce Chronic Trauma Encephalopathy (CTE) for athletes who competed in contact sports during their college years.
  • This study used an omega-3 supplement containing EPA, DHA, and DPA. It resulted in an increase in EPA and DHA levels, but not DPA levels. Thus, there is no evidence that the DPA portion of the supplement was needed. I recommend a supplement with a 4:1 ratio of DHA to EPA for brain health.
  • This study did not establish an optimal dose of omega-3s. Until more information is available, I would recommend around 2,000 mg of DHA and 500 mg of EPA for athletes in contact sports, but the optimal dose may be lower or higher.

Can Omega-3s Protect Your Brain?

If you are not a college athlete competing in contact sports (which would include most of us), you are probably wondering what this means for you. Here are my thoughts.

As Benjamin Franklin said, “An ounce of prevention is worth a pound of cure.”

  • You never know when you may suffer unexpected head trauma. It could be a car accident. It could be a fall. You might be playing a friendly game of softball and get hit in the head by a foul ball. You get the point.
  • And the best time to make sure you have enough omega-3s (specifically DHA + EPA) in your brain is before the trauma occurs.

But how much DHA + EPA is enough? This is where it gets confusing.

  • Recommendations range from 500 mg/day to 3,000 mg/day depending on whether the goal is to reduce death from heart disease, lower blood pressure, or lower triglycerides.
  • This study used 2,500 mg/day to reduce a marker of brain damage in college athletes, but we don’t know whether that is optimal.
  • Finally, these numbers are averages, and none of us are average. We all utilize omega-3s from supplements with different efficiencies.

My recommendation is to use the Omega-3 Index as a gauge. It tells us how much DHA + EPA we have actually accumulated in our tissues.

  • An Omega-3 Index of 8% is considered optimal for heart health, and this study suggests it might be optimal for brain health as well.
  • So, my recommendation is to get your Omega-3 Index measured at 6-month intervals until you have determined the amount of supplemental DHA + EPA you need to attain and maintain an 8% Omega-3 Index.
  • Based on this study, I would recommend a high-purity supplement with an ~4:1 ratio of DHA to EPA if your primary goal is brain health. But other studies suggest that an EPA to DHA ratio of 3:2 may be optimal for heart health.

In short:

  • While the evidence is not definitive, this study suggests that it might be prudent to have accumulated enough DHA and EPA in your neural tissue to help reduce the complications of unexpected brain trauma.
  • This study also suggests that you may wish to aim for an Omega-3 Index of 8%.
    • An Omega-3 Index of 8% likely has side benefits. There is also evidence that it may reduce the rate of cognitive decline as you age, help protect your heart, and reduce inflammation.
  • The ratio of DHA to EPA in the supplement you choose may be different for brain health and heart health. If you are equally interested in brain and heart health, just be sure your supplement provides both DHA and EPA.

The Bottom Line 

Repeated head injuries are a major concern for NCAA football players and college athletes in other contact sports. That’s because repeated head injuries during their playing years are associated with a degenerative brain condition called Chronic Trauma Encephalopathy or CTE, which can lead to irrational behavior and/or early-onset Alzheimer’s.

A recent study looked at the effect of a high-dose, comprehensive omega-3 supplement on Nf-L, a marker of brain injury, in NCAA football players during the playing season. Two teams were selected.

  • In the team receiving no omega-3s, Nf-L increased 1.5-fold during preseason practice and remained elevated throughout the playing season.
  • In the team receiving omega-3 supplementation there was no significant increase in Nf-L levels.

The authors of the study concluded, “These findings suggest a…neuroprotective effect of… omega-3 fatty acid supplementation in American-style football athletes.”

The authors went on to say, “Similar elevations of Nf-L have been reported with RHI [repeated head injuries] in other contact sport athletes. These data suggest that those other contact sports athletes may also benefit from omega-3 supplementation…”

For more information on this study and what it means for all of us who are not college athletes, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 

 

Can You Slow The Aging Process?

A Holistic Approach To Living Healthy Longer

Author: Dr. Stephen Chaney 

Fountain Of YouthEver since Ponce de Leon’s famed 1513 expedition, people have been searching for the proverbial “Fountain of Youth”.

There have been hucksters selling pills and potions to reverse the aging process. Most of them didn’t work. They were no better than snake oil.

There have been legitimate scientists investigating the effect of supplements, diets, and lifestyle on the aging process. Most of these studies have come up empty.

In this study (M Gagesch et al, Journal of Frailty And Aging, 12: 71-77, 2023) the authors hypothesized that a holistic approach might be better than individual interventions. They asked whether a combination of vitamin D3 supplementation, omega-3 supplementation, and exercise might be more effective at slowing the aging process than any one of them alone.

There was good reason for choosing each of these interventions:

  • Low 25-hydroxyvitamin D levels have been associated with frailty in several studies. But association studies do not prove cause and effect, and no randomized, placebo control studies have measured the effect of vitamin D supplementation on frailty.
  • Omega-3 fatty acids have been linked to skeletal muscle health, and some studies have suggested omega-3 supplementation may improve muscle function in older adults.
  • A recent study has reported that a supervised exercise program reduced frailty in older adults. The authors wanted to see if the same was true for unsupervised, at-home exercise program.

How Was This Study Done?

clinical studyThe data from this study were collected as part of the DO-HEALTH study, a 3-year, double-blind, randomized, placebo-controlled clinical trial designed to identify interventions that support healthy aging in European adults aged 70 and older.

Initially, 2,157 healthy, community-dwelling adults were enrolled from five countries (Switzerland, Germany, Austria, France, and Portugal). They were examined in clinical centers at the beginning of the study and years 1, 2, and 3, with phone follow-up at 3-month intervals.

Aging was measured by something called the frailty index. At each clinic visit the participants were evaluated in five areas:

  1. Weakness was measured as grip strength. Weakness was defined as being in the lowest quintile of grip strength for someone their age and gender.

2) Fatigue was defined as a positive answer to the question, “In the last month have you had too little energy to do the things you wanted to do?”

3) Involuntary weight loss was defined as >5% weight loss within a year.

4) Low gait speed was defined as <2 ft/sec walking speed.

5) Low activity level was defined as a response of, “Less than once a week” to the question, “How often do you engage in activities that require a low or moderate level of energy such as gardening, cleaning the car, or going on a walk?”

    • Participants with 0 positive items were classified as robust.
    • Those with 1 or 2 positive items were classified as pre-frail.
    • Those with 3 or more positive items were classified as frail.

Only those participants from the DO-HEALTH study classified as robust at the first clinical visit (1,137 participants) were included in this study. The study measured how many of them became pre-frail or frail during the average follow-up of 2.9 years.

The interventions were:

  • Capsules containing a total of 2,000 IU/day of vitamin D3 with sunflower oil capsules as a placebo.
  • Capsules containing a total of 1,000 mg of EPA and DHA in a 1:2 ratio with a sunflower oil capsule as a placebo.
  • Exercise consisting of an unsupervised strength-training routine for 30 minutes, 3 times per week.
  • In this case the control was an unsupervised joint-flexibility routine for 30 minutes, 3 times per week.

The interventions were done individually, two together (vitamin D + omega-3, vitamin D + exercise, omega-3 + exercise), and all three together (vitamin D + omega-3 + exercise).

The results were corrected for age, sex, and low-trauma falls in the preceding 12 months.

Finally, the study measured blood 25-hydroxyvitamin D levels and omega-3 levels at each office visit. They found:

  • 28% of the participants were deficient in vitamin D at the beginning of the study.
  • The interventions gave the expected increase in vitamin D and omega-3 status.

Can You Slow The Aging Process?

Older Couple Running Along BeachAt the end of 3 years:

  • 61.2% of the participants had declined from robust health to the pre-frail category.
  • 2.6% of the participants had declined from robust health to the frail category.

[Note: The terms “pre-frail” and “frail” are measures of aging which I have described above.]

The number of participants in the frail category were too small to obtain a statistically significant measure of the effects of vitamin D, omega-3s, and exercise on frailty, so I will only discuss the results measuring their effect on pre-frailty in this review. These results are:

  • None of these interventions had a statistically significant effect on aging by themselves, as measured by the transition from robust health to pre-frailty.
  • None of these interventions had a statistically significant effect on aging when combined in pairs, although the vitamin D3-omega-3 pair came close to significance (31% reduction in pre-frailty with a probability of 94% (probabilities of 95% and above are considered significant.))
  • However, the combination of vitamin D3, omega-3s, and exercise reduced the risk of aging by 39%, which was statistically significant (96% probability).

The authors concluded, “Robust, generally healthy and active older adults without major comorbidities [diseases], may benefit from a combination of high-dose, supplemental vitamin D3, marine omega-3s, and SHEP [unsupervised strength training] with regard to the risk of becoming pre-frail over 3 years.”

A Holistic Approach To Living Healthy Longer

holistic approachThis study was a double-blind, placebo-controlled study, which is the gold standard for clinical studies. It was also unusually large (1,137 participants) and long (3 years) for this kind of study.

It was also much better than most double-blind, placebo-controlled studies in that it included three interventions (vitamin D3 supplementation, omega-3 supplementation, and exercise) and looked at their effect on aging individually, in pairs, and all three together.

One take-home lesson from this study was that a holistic approach that included all 3 interventions was superior to any one of these interventions alone or in pairs.

But the most important take-home lesson is this:

If you asked your doctor what you should do to slow the aging process, he or she would probably tell you, “Exercise may help, but forget supplementing with extra vitamin D or omega-3s. They have no proven benefits.”

They would be correct based on studies of each of these interventions individually. And the studies they might quote would be double-blind, placebo-controlled studies, the gold standard of clinical studies.

But would that be the best advice. Clearly not. The best advice would be to follow a holistic approach and use all 3 interventions together.

Unfortunately, this is true for most studies of supplementation. Supplements are tested individually, as if they were “magic bullets”. And most of these studies come up short. They fail to find a significant benefit of supplementation.

Supplements are almost never tested holistically in combination with each other and other interventions, but that’s where the “magic” really happens.

If you are a regular reader of “Health Tips From The Professor”, this should come as no surprise to you. I have often shared the Venn diagram on the upper left and said that the sweet spot is when two or more of these interventions overlap.

Of course, this is the first study of its kind. More studies are needed. More importantly, we need studies to fill in the other parts of the Venn diagram. We need to ask about the effect of diet and obesity on aging. For example:

  • If we add a healthy diet to vitamin D, omega-3s, and exercise, can we reduce aging even more dramatically?
  • Is the effort it takes to lose excess weight worth it? Does adding it to diet, supplementation, and exercise reduce the aging process even more?

Of course, I think the answer to those questions is an unequivocal, “Yes”. Multiple studies have shown that both a healthy weight and a healthy diet help you live healthier longer.

But I am a scientist. Neither diet nor weight loss have been tested in combination with supplementation and exercise. I would like to see studies combining all these modalities in a single double-blind, placebo-controlled experiment.

So, what does this mean for you? If you want to slow the aging process, if you are in search of your personal “Fountain of Youth…

  • This study suggests that vitamin D3 supplementation (2,000 IU/day), omega-3 supplementation (1,000 mg of EPA + DHA), and an exercise program that emphasizes strength training can help you slow the aging process.

But that is only the beginning. I also recommend…

  • Including a healthy diet and a healthy weight in your anti-aging regimen.
  • Making sure your diet has enough protein and leucine, since older adults need more of both to maximize the benefits of strength training.
  • Including other supplements as evidence for their benefit in slowing the aging process becomes available.

The Bottom Line 

A recent double-blind, placebo-controlled study looked at the effect of vitamin D3 supplementation (2,000 IU/day), omega-3 supplementation (1,000 mg/day EPA + DHA in a 1:2 ratio), and an unsupervised strength training program on the aging process.

It differed from most other double-blind, placebo-controlled studies in that:

  • It was larger (1,137 participants) and longer (3 years) than most.
  • More importantly, each intervention was tested individually, in pairs, and all 3 together.

The study found that:

  • None of these interventions had a statistically significant effect on aging by themselves.
  • None of these interventions had a statistically significant effect on aging when combined in pairs, although the vitamin D3-omega-3 pair came close to significance.
  • However, the combination of vitamin D3, omega-3s, and exercise reduced the risk of aging by a statistically significant 39%.

One take-home lesson from this study was that a holistic approach that included all 3 interventions was superior to any one of these interventions alone or in pairs.

But the most important take-home lesson is this:

If you asked your doctor what you should do to slow the aging process, he or she would probably tell you, “Exercise may help, but forget supplementing with extra vitamin D or omega-3s. They have no proven benefits.”

They would be correct based on studies of each of these interventions individually. And the studies they might quote would be double-blind, placebo-controlled studies, the gold standard of clinical studies.

But would that be the best advice? Clearly not. The best advice would be to follow a holistic approach and use all 3 interventions together.

Unfortunately, this is true for most studies of supplementation. Supplements are tested individually, as if they were “magic bullets”. And most of these studies come up short. They fail to find a significant benefit of supplementation.

Supplements are almost never tested holistically in combination with each other and other interventions, but that’s where the “magic” really happens.

For more information on this study and my recommendations on how to slow the aging process read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ___________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

Is HDL Good For Your Heart?

Is Everything You Knew About HDL Wrong?

Author: Dr. Stephen Chaney 

HDL CHolesterolIn last week’s “Health Tips From the Professor” I talked about one of the greatest strengths of the scientific method – namely that investigators constantly challenge, and occasionally disprove, existing paradigms. That allows us to discard old models of how things work and replace them with better ones.

Last week I shared a study that disproved the paradigm that low to moderate alcohol consumption is healthier than total abstinence. This week I share several studies that challenge the belief that HDL cholesterol is good for your heart.

The belief that HDL is good for your heart has all the hallmarks of a classic paradigm.

  • It is supported by multiple clinical studies.
  • Elaborate metabolic explanations have been proposed to support the paradigm.
  • It is the official position of most medical societies, scientific organizations, and health information sites on the web.
  • It is the recommendation of most health professionals.
  • It has been repeated so often by so many trusted sources that everyone assumes it must be true.

Once we accept the HDL/heart health paradigm as true, we can construct other hypotheses on that foundation. For example:

  • Raising your HDL levels naturally takes effort. Pharmaceutical companies have been pursuing the “magic pill” that raises HDL levels without any effort on your part.
  • Low carb diets like the Keto and Paleo diets are high in saturated fat. The low carb enthusiasts claim this is a good thing because saturated fat raises HDL levels, and HDL is good for your heart.

But what if the underlying HDL/heart health paradigm weren’t true? These hypotheses would be like the parable of a house built on a foundation of sand. The paradigm will be washed away as soon as it is critically tested.

So, let’s look at experiments that have challenged the HDL/heart health paradigm.

Do Drugs That Increase HDL Levels Work?

The first hint that the HDL/heart health paradigm might be faulty happened when a pharmaceutical company developed a drug that selectively increased HDL levels.

The drug company thought they had found the goose that laid golden eggs. Just imagine. People wouldn’t have to lose weight, exercise, or change their diet. They could simply take a pill and dramatically decrease their heart disease risk. A drug like that would be worth $billions.

The problem was that when they tested their drug (torcetrapib) in clinical trials, it had absolutely no effect on heart disease outcomes (AR Tall et al, Atherosclerosis, Thrombosis, and Vascular Biology 27:257-260, 2007).

The pharmaceutical company couldn’t believe it. Raising HDL levels just had to reduce heart disease risk. They concluded they didn’t have the right drug, and they continued to work on developing new drugs.

That was 16 years ago, and no HDL-increasing drug has made it to market. Have they just not found the right drug, or does this mean the HDL/heart health paradigm is incorrect?

Does Saturated Fat Decrease Heart Disease Risk?

Now let’s turn to two claims of low carb enthusiasts.

#1: Saturated fats decrease your risk of heart disease in the context of a low carb diet. I have debunked that claim in several previous issues of “Health Tips From The Professor”. But let me refer you to two articles here – one on saturated fat and heart disease risk and one on low-carb diets.

#2: Saturated fats decrease heart disease risk because they raise HDL levels. This is the one I will address today.

The idea that saturated fats decrease heart disease risk because they raise HDL levels is based on a simplistic concept of HDL particles. The reality is more complex. Several clinical studies have shown:

  • The type of fat determines the property of the HDL particles.
    • When polyunsaturated fats predominate, the HDL particles have an anti-inflammatory effect. When saturated fats predominate, the HDL particles have a pro-inflammatory effect.
  • Anti-inflammatory HDL particles relax the endothelial cells lining our blood vessels. That makes the lining of our blood vessels more pliable, which improves blood flow and reduces blood pressure.
    • Anti-inflammatory HDL particles also help reduce inflammation of the endothelial lining. This is important because an inflamed endothelial lining is more likely to accumulate fatty plaques and to trigger blood clot formation that can lead to heart attacks and strokes.

So, the question becomes, “What good is it to raise HDL levels if you are producing an unhealthy, pro-inflammatory HDL particle that may increase the risk of high blood pressure, heart attacks, and strokes?”

In short, these studies suggest it isn’t enough to just focus on HDL levels. You need to ask what kind of HDL particles you are creating.

Is HDL Good For Your Heart?

strong heartOnce the studies were published showing that…

  • Drug-induced increase of HDL levels without any change in health habits is not sufficient to decrease heart attack risk, and…
  • Not all HDL particles are healthy. There are anti-inflammatory or pro-inflammatory HDL particles, which likely have opposite effects on heart attack risk…

…some people started to question the HDL/heart health paradigm. And one group came up with the perfect study to test the paradigm.

But before I describe the study, I need to review the term “confounding variables”. I described the term and how it affects clinical studies in last week’s article. Here is a brief synopsis:

  • The studies supporting the HDL/heart health paradigm are association studies. Association studies measure the association between a single variable (in this case, increase in HDL levels) and an outcome (in this case, heart disease events, heart disease deaths, and total deaths).
  • Associations need to be corrected for other variables known to affect the same outcome (things like age, gender, smoking, and diabetes would be examples in this case).
  • Confounding variables are variables that also affect the outcome but are unknown or ignored. Thus, they are not used to correct the associations, which can bias the results.

The authors of this study (M Briel et al, BMJ 2009:338.b92) observed that most interventions that increase HDL levels also lower LDL levels. Lowering LDL is known to decrease the risk of heart disease deaths. But this effect had been ignored in most studies looking at the association between HDL and heart disease deaths.

They hypothesized that the change in LDL levels was a confounding variable that had been ignored in previous studies and may have biased the results.Heart Disease Study

To test this hypothesis the authors searched the literature and identified 108 studies with 299,310 participants that:

  • Compared the effect of drugs, omega-3 fatty acids, or diet with either a placebo or usual care.
  • Measured both HDL and LDL levels.
  • Measured reduction in cardiovascular risk.
  • Had a randomized control design.
  • Lasted at least 6 months.

They found that every 10 mg/dl decrease in LDL levels in these studies was responsible for a:

  • 7.1% reduction in heart disease events (both heart disease deaths and non-fatal heart attacks).
  • 7.2% reduction in heart disease deaths.
  • 4.4% reduction in total deaths.

After correcting for the effect of decreased LDL levels on these heart disease outcomes, the increase in HDL levels had no statistically significant effect on any of the outcomes.

The authors concluded, “Available data suggest that simply increasing the amount of circulating HDL cholesterol does not reduce the risk of coronary heart disease events, coronary heart disease deaths, or total deaths. The results support reduction in LDL cholesterol as the primary goal for lipid modifying interventions.”

In other words, this study:

  • Supports the author’s hypothesis that LDL levels were a confounding variable that biased the studies supporting the HDL/heart health paradigm.
  • Concludes that increasing HDL levels has no effect on heart disease outcomes, thus invalidating the HDL/heart health paradigm.

Is Everything You Knew About HDL Wrong?

Peek Behind The CurtainDoes that mean that everything you knew about HDL is wrong? Not exactly. It just means that you need to change your perspective.

Don’t focus on HDL levels. Peek behind the curtain and focus on what’s behind the HDL levels. For example:

  • Losing weight when overweight increases HDL levels. But the decrease in heart disease outcomes is more likely due to weight loss than to the increase in HDL levels.
  • Exercise increases HDL levels. But the decrease in heart disease outcomes is more likely due to exercise than to the increase in HDL levels.
  • Reversing pre-diabetes or type 2 diabetes increases HDL levels. But the decrease in heart disease outcomes is more likely due to the reversal of diabetes than to the increase in HDL levels.
  • High-dose omega-3 fatty acids increase HDL levels. But the decrease in heart disease outcomes is more likely due to the omega-3 fatty acids than to the increase in HDL levels.
  • The Mediterranean diet increases HDL levels. But the decrease in heart disease outcomes is more likely due to the diet than to the increase in HDL levels.

And if you want to go the drug route:

  • Statins and some other heart drugs increase HDL levels, but the reduction in heart disease outcomes is probably due to their effect on LDL levels rather than their effect on HDL levels.

On the other hand:

  • Saturated fats increase HDL levels. But saturated fats increase heart disease risk and create pro-inflammatory HDL particles. So, in this case the increase in HDL levels is not a good omen for your heart.
  • Drugs have been discovered that selectively increase HDL levels. However, there is nothing of value behind this increase in HDL levels, so the drugs have no effect on heart disease outcomes.

The Bottom Line 

In this article I discuss several studies that have challenged the HDL/heart health paradigm – the belief that HDL is good for your heart.

For example, one group of investigators analyzed the studies underlying the HDL/heart health paradigm. They hypothesized that these studies were inaccurate because they failed to account for the effects of LDL levels on heart disease outcomes.

After correcting for the effect of decreased LDL levels on heart disease outcomes in the previous studies, the authors showed that increases in HDL levels had no significant effect on any heart disease outcome.

The authors concluded, “Available data suggest that simply increasing the amount of circulating HDL cholesterol does not reduce the risk of coronary heart disease events, coronary heart disease deaths, or total deaths. The results support reduction in LDL cholesterol as the primary goal for lipid modifying interventions.”

In other words, this study:

  • Supports the author’s hypothesis that LDL levels were a confounding variable that biased the studies supporting the HDL/heart health paradigm.
  • Concludes that increasing HDL levels has no effect on heart disease outcomes, thus invalidating the HDL/heart health paradigm.

Does that mean that everything you knew about HDL is wrong? Not exactly. It just means that you need to change your perspective. Don’t focus on HDL levels. Focus on what’s behind the HDL levels. For more information on that, read the article above.

For more information on this study, and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

Which Supplements Are Good For Your Heart?

How Should You Interpret This Study? 

Author: Dr. Stephen Chaney 

strong heartFebruary is Heart Health month. So, it is fitting that we ask, “What is the status of heart health in this country?” The American Heart Association just published an update of heart health statistics through 2019 (CW Tsao et al, Circulation, 145: e153-e639, 2022). And the statistics aren’t encouraging. [Note: The American Heart Association only reported statistics through 2019 because the COVID-19 pandemic significantly skewed the statistics in 2020 and 2021].

The Good News is that between 2009 and 2019:

  • All heart disease deaths have decreased by 25%.
  • Heart attack deaths have decreased by 6.6%.
  • Stroke deaths have decreased by 6%.

The Bad News is that:

  • Heart disease is still the leading cause of death in this country.
  • Someone dies from a heart attack every 40 seconds.
  • Someone dies from a stroke every 3 minutes.

Diet, exercise, and weight control play a major role in reducing the risk of heart disease. Best of all, they have no side effects. They represent a risk-free approach that each of us can control.

But is there something else? Could supplements play a role? Are supplements hype or hope for a healthy heart?

All the Dr. Strangeloves in the nutrition space have their favorite heart health supplements. They claim their supplements will single-handedly abolish heart disease (and help you leap tall buildings in a single bound).

On the other hand, many doctors will tell you these supplements are a waste of money. They don’t work. They just drain your wallet.

It’s so confusing. Who should you believe? Fortunately, a recent study (P An et al, Journal of the American College of Cardiology, 80: 2269-2285, 2022) has separated the hype from the hope and tells us which “heart-healthy” supplements work, and which don’t.

How Was This Study Done?

Clinical StudyThis was a major clinical study carried out by researchers from the China Agricultural University and Brown University in the US. It was a meta-analysis, which means it combined the data from many published clinical trials.

The investigators searched three major databases of clinical trials to identify:

  • 884 randomized, placebo-controlled clinical studies…
  • Of 27 types of micronutrients…
  • With a total of 883,627 patients…
  • Looking at the effectiveness of micronutrient supplementation lasting an average of 3 years on either…
    • Cardiovascular risk factors like blood pressure, total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides…or…
    • Cardiovascular outcomes such as coronary heart disease (CHD), heart attacks, strokes, and deaths due to cardiovascular disease (CVD) and all causes.

[Note: Coronary heart disease (CHD) refers to build up of plaque in the coronary arteries (the arteries leading to the heart). It is often referred to as heart disease and can lead to heart attacks (myocardial infarction). Cardiovascular disease (CVD) is a more inclusive term that includes coronary heart disease, stroke, congenital heart defects, and peripheral artery disease.]

The investigators also included an analysis of the quality of the data in each of the clinical studies and rated the evidence of each of their findings as high quality, moderate quality, or low quality.

Which Supplements Are Good For Your Heart?

The top 3 heart-healthy supplements in this study were:

Omega-3s And Heart DiseaseOmega-3 Fatty Acids:

  • Increased HDL cholesterol and decreased triglycerides, both favorable risk factors for heart health.
  • Deceased risk of heart attacks by 15%, all CHD events by 14%, and CVD deaths by 7% (see definitions of CHD and CVD above).
  • The median dose of omega-3 fatty acids in these studies was 1.8 g/day.
  • The evidence was moderate quality for all these findings.

Folic Acid:

  • Decreased LDL cholesterol (moderate quality evidence) and decreased blood pressure and total cholesterol (low quality evidence).
  • Decreased stroke risk by 16% (moderate quality evidence).

Coenzyme Q10:

  • Decreased triglycerides (high quality evidence) and reduced blood pressure (low quality evidence).
  • Decreased the risk of all-cause mortality by 32% (moderate quality evidence).
  • These studies were performed with patients diagnosed with heart failure. Coenzyme Q10 is often recommended for these patients, so the studies were likely performed to test the efficacy of this treatment.

There were three micronutrients (vitamin C, vitamin E, and vitamin D) that did not appear to affect heart disease outcomes.

Finally, as reported in previous studies, β-carotene increased the risk of stroke, CVD mortality, and all-cause mortality.

In terms of the question I asked at the beginning of this article, this study concluded that:

  • Omega-3, folic acid, and coenzyme Q10 supplements represent hope for a healthy heart.
  • Vitamin C, vitamin E, and vitamin D supplements represent hype for a healthy heart.
  • β-carotene supplements represent danger for a healthy heart.

But these conclusions just scratch the surface. To put them into perspective we need to dig a bit deeper.

How Should You Interpret This Study?

Question MarkIn evaluating the significance of these findings there are two things to keep in mind.

#1: This study is a meta-analysis and meta-analyses have both strengths and weaknesses.

The strength of meta-analyses is that by combining multiple clinical studies they can end up with a database containing 100s of thousands of subjects. This allows them to do two things:

  • It allows the meta-analysis to detect statistically significant effects that might be too small to detect in an individual study.
  • It allows the meta-analysis to detect the average effect of all the clinical studies it includes.

The weakness of meta-analyses is that the design of individual studies included in the analysis varies greatly. The individual studies vary in things like dose, duration, type of subjects included in the study, and much more.

This is why this study rated most of their conclusions as backed by moderate- or low-quality evidence. [Note: The fact that the authors evaluated the quality of evidence is a strength of this study. Most meta-analyses just report their conclusions without telling you how strong the evidence behind those conclusions is.]

#2: Most clinical studies of supplements (including those included in this meta-analysis) have two significant weaknesses.

  • Most studies do not measure the nutritional status of their subjects prior to adding the supplement. If their nutritional status for a particular nutrient was already optimal, there is no reason to expect more of that nutrient to provide any benefit.
  • Most studies measure the effect of a supplement on a cross-section of the population without asking who would be most likely to benefit.

You would almost never design a clinical study that way if you were evaluating the effectiveness of a potential drug. So, why would you design clinical studies of supplements that way?

With these considerations in mind, let me provide some perspective on the conclusions of this study.

Coenzyme Q10:

This meta-analysis found that coenzyme Q10 significantly reduced all-cause mortality in patients with heart failure. This is consistent with multiple clinical studies and a recent Cochrane Collaboration review.

Does coenzyme Q10 have any heart health benefits for people without congestive heart failure? There is no direct evidence that it does, but let me offer an analogy with statin drugs.

Statin drugs are very effective at reducing heart attacks in high-risk patients. But they have no detectable effect on heart attacks in low-risk patients. However, this has not stopped the medical profession from recommending statins for millions of low-risk patients. The rationale is that if they are so clearly beneficial in high-risk patients, they are “probably” beneficial in low-risk patients.

I would argue a similar rationale should apply to supplements like coenzyme Q10.

Omega-3s:

This study found that omega-3 reduced both heart attacks and the risk of dying from heart disease. Most previous meta-analyses of omega-3s and heart disease have come to the same conclusion. However, some meta-analyses have failed to find any heart health benefits of omega-3s. Unfortunately, this has allowed both proponents and opponents of omega-3 use for heart health to quote studies supporting their viewpoint.

However, there is one meta-analysis that stands out from all the others. A group of 17 scientists from across the globe collaborated in developing a “best practices” experimental design protocol for assessing the effect of omega-3 supplementation on heart health. They conducted their clinical studies independently, and when their data (from 42,000 subjects) were pooled, the results showed that omega-3 supplementation decreased:

  • Premature death from all causes by 16%.
  • Premature death from heart disease by 19%.
  • Premature death from cancer by 15%.
  • Premature death from causes other than heart disease and cancer by 18%.

This study eliminates the limitations of previous meta-analyses. That makes it much stronger than the other meta-analyses. And these results are consistent with the current meta-analysis.

Omega-3s have long been recognized as essential nutrients. It is past time to set Daily Value (DV) recommendations for omega-3s. Based on the recommendations of other experts in the field, I think the DV should be set at 500-1,000 mg/day. I take more than that, but this would represent a good minimum recommendation for heart health.

folic acidFolic acid:

As with omega-3s, this meta-analysis reported a positive effect of folic acid on heart health. But many other studies have come up empty. Why is that?

It may be because, between food fortification and multivitamin use, many Americans already have sufficient blood levels of folic acid. For example, one study reported that 70% of the subjects in their study had optimal levels of folates in their blood. And that study also reported:

  • Subjects with adequate levels of folates in their blood received no additional benefit from folic acid supplementation.
  • However, for subjects with inadequate blood folate levels, folic acid supplementation decreased their risk of heart disease by ~15%.

We see this pattern over and over in supplement studies. Supplement opponents interpret these studies as showing that supplements are worthless. But a better interpretation is that supplements benefit those who need them.

The problem is that we don’t know our blood levels of essential nutrients. We don’t know which nutrients we need, and which we don’t. That’s why I like to think of supplements as “insurance” against the effects of an imperfect diet.

Vitamins E and D:

The situation with vitamins E and D is similar. This meta-analysis found no heart health benefit of either vitamin E or D. That is because the clinical studies included in the meta-analysis asked whether vitamin E or vitamin D improved heart health for everyone in the study.

Previous studies focusing on patients with low blood levels of these nutrients and/or at high risk of heart disease have shown some benefits of both vitamins at reducing heart disease risk.

So, for folic acid, vitamin E, and vitamin D (and possibly vitamin C) the take-home message should be:

  • Ignore all the Dr. Strangeloves telling you that these vitamins are “magic bullets” that will dramatically reduce your risk of heart disease.
  • Ignore the naysayers who tell you they are worthless.
  • Use supplementation wisely to make sure you have the recommended intake of these and other essential nutrients.

β-carotene:

This meta-analysis reported that β-carotene increased the risk of heart disease. This is not a new finding. Multiple previous studies have come to the same conclusion.

And we know why this is. There are many naturally occurring carotenoids, and they each have unique heart health benefits. A high dose β-carotene supplement interferes with the absorption of the other carotenoids. You are creating a deficiency of other heart-healthy carotenoids.

If you are not getting lots of colorful fruits and vegetables from your diet, my recommendation is to choose a supplement with all the naturally occurring carotenoids in balance – not a pure β-carotene supplement.

The Bottom Line 

The Dr. Strangeloves in the nutrition space all have their favorite heart health supplements. They claim their supplements will single-handedly abolish heart disease (and help you leap tall buildings in a single bound).

On the other hand, many doctors will tell you these supplements are a waste of money. They don’t work. They just drain your wallet.

It’s so confusing. Who should you believe? Fortunately, a recent study has separated the hype from the hope and tells us which “heart-healthy” supplements work, and which don’t.

This study was a meta-analysis of 884 clinical studies with 883,627 participants. It reported:

  • Omega-3 supplementation deceased risk of heart attacks by 15% and all cardiovascular deaths by 7%.
  • Folic acid supplementation decreased stroke risk by 16%.
  • Coenzyme Q10 supplementation decreased the risk of all-cause mortality in patients with heart failure by 32%.
  • Vitamin C, vitamin E, vitamin D did not appear to affect heart disease outcomes.
  • β-carotene increased the risk of stroke, CVD mortality, and all-cause mortality.

For more details on this study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Can Healthy Eating Help You Lose Weight?

Who Benefits Most From A Healthy Diet?

Author: Dr. Stephen Chaney 

fad dietsFad diets abound. High protein, low carb, low fat, vegan, keto, paleo – the list is endless. They all claim to be backed by scientific studies showing that you lose weight, lower your cholesterol and triglycerides, lower your blood pressure, and smooth out your blood sugar swings.

They all claim to be the best. But any reasonable person knows they can’t all be the best. Someone must be lying.

My take on this is that fad diet proponents are relying on “smoke and mirrors” to make their diet look like the best. I have written about this before, but here is a brief synopsis:

  • They compare their diet with the typical American diet.
    • Anything looks good compared to the typical American diet.
    • Instead, they should be comparing their diet with other weight loss diets. That is the only way we can learn which diet is best.
  • They are all restrictive diets.
    • Any restrictive diet will cause you to eat fewer calories and to lose weight.
    • As little as 5% weight loss results in lower cholesterol & triglycerides, lower blood pressure, and better control of blood sugar levels.

Simply put, any restrictive diet will give you short-term weight loss and improvement in blood parameters linked to heart disease, stroke, and diabetes. But are these diets healthy long term? For some of them, the answer is a clear no. Others are unlikely to be healthy but have not been studied long term. So, we don’t know whether they are healthy or not.

What if you started from the opposite perspective? Instead of asking, “Is a diet that helps you lose weight healthy long term?”, what if you asked, “Can healthy eating help you lose weight?” The study (S Schutte et al, American Journal of Clinical Nutrition, 115: 1-18, 2022) I will review this week asked that question.

More importantly, it was an excellent study. It compared a healthy diet to an unhealthy diet with exactly the same degree of caloric restriction. And it compared both diets to the habitual diet of people in that area. This study was performed in the Netherlands, so both weight loss diets were compared to the habitual Dutch diet.

How Was The Study Done?

clinical studyThis was a randomized controlled trial, the gold standard of clinical studies. The investigators recruited 100 healthy, abdominally obese men and women aged 40-70. At the time of entry into the study none of the participants:

  • Had diabetes.
  • Smoked
  • Had a diagnosed medical condition.
  • Were on a medication that interfered with blood sugar control.
  • Were on a vegetarian diet.

The participants were randomly assigned to:

  • A high-nutrient quality diet that restricted calories by 25%.
  • A low-nutrient-quality diet that restricted calories by 25%.
  • Continue with their habitual diet.

The study lasted 12 weeks. The participants met with a dietitian on a weekly basis. The dietitian gave them the foods for the next week and monitored their adherence to their assigned diet. They were advised not to change their exercise regimen during the study.

At the beginning and end of the study the participants were weighed, and cholesterol, triglycerides, and blood pressure were measured.

Can Healthy Eating Help You Lose Weight?

Vegetarian DietTo put this study into context, these were not healthy and unhealthy diets in the traditional sense.

  • Both were whole food diets.
  • Both included fruits, vegetables, low-fat dairy, and lean meats.
  • Both restricted calories by 25%.

The diets were designed so that the “high-nutrient quality” diet had significantly more plant protein (in the form of soy protein), fiber, healthy fats (monounsaturated and omega-3 fats), and significantly less fructose and other simple sugars than the “low-nutrient-quality” diet.

At the end of 12 weeks:

  • Participants lost significant weight on both calorie-restricted diets compared to the group that continued to eat their habitual diet.
    • That is not surprising. Any diet that successfully restricts calories will result in weight loss.
  • Participants on the high-nutrient quality diet lost 33% more weight than participants on the low-nutrient-quality diet (18.5 pounds compared to 13.9 pounds).
  • Participants on the high-nutrient quality diet lost 50% more inches in waist circumference than participants on the low-nutrient-quality diet (1.8 inches compared to 1.2 inches).
    • This is a direct measure of abdominal obesity.

When the investigators measured blood pressure, fasting total cholesterol levels, and triglyceride levels:Heart Healthy Diet

  • These cardiovascular risk factors were significantly improved on both diets.
    • Again, this would be expected. Any diet that causes weight loss results in an improvement in these parameters.
  • The reduction in total serum cholesterol was 2.5-fold greater and the reduction in triglycerides was 2-fold greater in the high-nutrient quality diet group than in the low-nutrient-quality diet group.
  • The reduction in systolic blood pressure was 2-fold greater and the reduction in diastolic blood pressure was 1.67-fold greater in the high-nutrient quality diet group than in the low-nutrient-quality diet group.

The authors concluded, “Our results demonstrate that the nutrient composition of an energy-restricted diet is of great importance for improvements of metabolic health in an overweight, middle-aged population. A high-nutrient quality energy-restricted diet enriched with soy protein, fiber, monounsaturated fats, omega-3 fats, and reduced in fructose provided additional health benefits over a low-nutrient quality energy-restricted diet, resulting in greater weight loss…and promoting an antiatherogenic blood lipid profile.”

In short, participants in this study lost more weight and had a better improvement in risk factors for heart disease on a high-nutrient-quality diet than on a low-nutrient-quality diet. Put another way, healthy eating helped them lose weight and improved their health.

Who Benefits Most From A Healthy Diet?

None of the participants in this study had been diagnosed with diabetes when the study began. However, all of them were middle-aged, overweight, and had abdominal obesity. That means many of them likely had some degree of insulin resistance.

Because of some complex metabolic studies that I did not describe, the investigators suspected that insulin resistance might influence the relative effectiveness of the two energy-restricted diets.

To test this hypothesis, they used an assay called HOMA-IR (homeostatic model assessment of insulin resistance). Simply put, this assay measures how much insulin is required to keep your blood sugar under control.

They used a HOMA-IR score of 2.5 to categorize insulin resistance among the participants.

  • Participants with a HOMA-IR score >2.5 were categorized as insulin-resistant. This was 55% of the participants.
  • Participants with a HOMA-IR score ≤2.5 were categorized as insulin-sensitive. This was 45% of the participants.

When they used this method to categorize participants they found:

  • Insulin-resistant individual lost about the same amount of weight on both diets.
  • Insulin-sensitive individuals lost 66% more weight on the high-nutrient-quality diet than the low-nutrient-quality diet (21.6 pounds compared to 13.0 pounds).

The investigators concluded, “Overweight, insulin-sensitive subjects may benefit more from a high- than a low-nutrient-quality energy-restricted diet with respect to weight loss…”

What Does This Study Mean For You?

Questioning WomanSimply put this study confirms that:

  • Caloric restriction leads to weight loss, and…
  • Weight loss leads to improvement in cardiovascular risk factors like total cholesterol, triglycerides, and blood pressure.
    • This is not new.
    • This is true for any diet that results in caloric restriction.

This study breaks new ground in that a high-nutrient quality diet results in significantly better:

  • Weight loss and…
  • Reduction in cardiovascular risk factors…

…than a low-nutrient quality diet. As I said above, the distinction between a “high-nutrient-quality” diet and a “low-nutrient-quality” diet may not be what you might have expected.

  • Both diets were whole food diets. Neither diet allowed sodas, sweets, and highly processed foods.
  • Both included fruits, vegetables, grains, and lean meats.
  • Both reduced caloric intake by 25%.
    • If you want to get the most out of your weight loss diet, this is a good place to start.

In this study the investigators designed their “high-nutrient-quality” diet so that it contained:

  • More plant protein in the form of soy protein.
    • In this study they did not reduce the amount of animal protein in the “high-nutrient-quality” diet. They simply added soy protein foods to the diet. I would recommend substituting soy protein for some of the animal protein in the diet.
  • More fiber.
    • The additional fiber came from substituting whole grain breads and brown rice for refined grain breads and white rice, adding soy protein foods, and adding an additional serving of fruit.
  • More healthy fats (monounsaturated and omega-3 fats).
    • The additional omega-3s came from adding a fish oil capsule providing 700mg of EPA and DHA.
  • Less simple sugars. While this study focused on fructose, their high-nutrient-quality diet was lower in all simple sugars.

ProfessorAll these changes make great sense if you are trying to lose weight. I would distill them into these 7 recommendations.

  • Follow a whole food diet. Avoid sodas, sweets, and highly processed foods.
  • Include all 5 food groups in your weight loss diet. Fruits, vegetables, whole grains, dairy, and lean proteins all play an important role in your long-term health.
  • Eat a primarily plant-based diet. My recommendation is to substitute plant proteins for at least half of your high-fat animal proteins. And this study reminds us that soy protein foods are a convenient and effective way to achieve this goal.
  • Eat a diet high in natural fibers. Including fruits, vegetables, whole grains, beans, nuts, seeds, and soy foods in your diet is the best way to achieve this goal.
  • Substitute healthy fats (monounsaturated and omega-3 fats) for unhealthy fats (saturated and trans fats) in your diet. And this study reminds us that it is hard to get enough omega-3s in your diet without an omega-3 supplement.
  • Reduce the amount of added sugar, especially fructose, from your diet. That is best achieved by eliminating sodas, sweets, and highly processed foods from the diet. I should add that fructose in fruits and some healthy foods is not a problem. For more information on that topic, I refer you to a previous “Health Tips” article .
  • Finally, I would like to remind you of the obvious. No diet, no matter how healthy, will help you lose weight unless you cut back on calories. Fad diets achieve that by restricting the foods you can eat. In the case of a healthy diet, the best way to do it is to cut back on portion sizes and choose foods with low caloric density.

I should touch briefly on the third major conclusion of this study, namely that the “high-nutrient quality diet” was not more effective than the “low-nutrient-quality” diet for people who were insulin resistant. In one sense, this was not news. Previous studies have suggested that insulin-resistant individuals have more difficulty losing weight. That’s the bad news.

However, there was a silver lining to this finding as well:

  • Only around half of the overweight, abdominally obese adults in this study were highly insulin resistant.
    • That means there is a ~50% chance that you will lose more weight on a healthy diet.
  • Because both diets restricted calories by 25%, insulin-resistant individuals lost weight on both diets.
    • That means you can lose weight on any diet that successfully reduces your caloric intake. That’s the good news.
    • However, my recommendation would still be to choose a high-nutrient quality diet that is designed to reduce caloric intake, because that diet is more likely to be healthy long term.

The Bottom Line 

A recent study asked, “Can healthy eating help you lose weight?” This study was a randomized controlled study, the gold standard of clinical studies. The participants were randomly assigned to:

  • A high-nutrient quality diet that restricted calories by 25%.
  • A low-nutrient-quality diet that restricted calories by 25%.
  • Continue with their habitual diet.

These were not healthy and unhealthy diets in the traditional sense.

  • Both were whole food diets.
  • Both included fruits, vegetables, low-fat dairy, and lean meats.
  • Both restricted calories by 25%.

The diets were designed so that the “high-nutrient quality” diet had significantly more plant protein (in the form of soy protein), fiber, healthy fats (monounsaturated and omega-3 fats), and significantly less fructose and other simple sugars than the “low-nutrient-quality” diet.

At the end of 12 weeks:

  • Participants on the high-nutrient quality diet lost 33% more weight than participants on the low-nutrient-quality diet (18.5 pounds compared to 13.9 pounds).

When the investigators measured cardiovascular risk factors at the end of 12 weeks:

  • The reduction in total serum cholesterol was 2.5-fold greater and the reduction in triglycerides was 2-fold greater in the high-nutrient quality diet group than in the low-nutrient-quality diet group.
  • The reduction in systolic blood pressure was 2-fold greater and the reduction in diastolic blood pressure was 1.67-fold greater in the high-nutrient quality diet group than in the low-nutrient-quality diet group.

The authors concluded, “Our results demonstrate that the nutrient composition of an energy-restricted diet is of great importance for improvements of metabolic health in an overweight, middle-aged population. A high-nutrient quality energy-restricted diet enriched with soy protein, fiber, monounsaturated fats, omega-3 fats, and reduced in fructose provided additional health benefits over a low-nutrient quality energy-restricted diet, resulting in greater weight loss…and promoting an antiatherogenic blood lipid profile.”

In short, participants in this study lost more weight and had a better improvement in risk factors for heart disease on a high-nutrient-quality diet than on a low-nutrient-quality diet. Put another way, healthy eating helped them lose weight and improved their health.

For more details on this study, what this study means for you, and my 7 recommendations for a healthy weight loss diet, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Can Diet Protect Your Mind?

Which Diet Is Best?

Author: Dr. Stephen Chaney 

can diet prevent alzheimer'sAlzheimer’s is a scary disease. There is so much to look forward to in our golden years. We want to enjoy the fruits of our years of hard work. We want to enjoy our grandkids and perhaps even our great grandkids. More importantly, we want to be able to pass on our accumulated experiences and wisdom to future generations.

Alzheimer’s and other forms of dementia have the potential to rob us of everything that makes life worth living. What is the use of having a healthy body, family, and fortune if we can’t even recognize the people around us?

Alzheimer’s and other forms of dementia don’t happen overnight. The first symptoms of cognitive decline are things like forgetting names, where you left things, what you did last week. For most people it just keeps getting worse.

Can diet protect your mind? Recent studies have given us a ray of hope. For example, several meta-analyses have shown that adherence to the Mediterranean diet was associated with a 25-48% lower risk of cognitive decline and dementia.

However, there were several limitations to the studies included in these meta-analyses. For example:

  • For most of the studies the diet was assessed only at the beginning of the study. We have no idea whether the participants followed the same diet throughout the study. This means, we cannot answer questions like:
    • What is the effect of long-term adherence to a healthy diet?
    • Can you reduce your risk of cognitive decline if you switch from an unhealthy diet to a healthy diet?
  • These studies focused primarily on the Mediterranean diet. This leaves the question:
    • What about other healthy diets? Is there something unique about the Mediterranean diet, or do other healthy diets also reduce the risk of cognitive decline?

This study (C Yuan et al, American Journal of Clinical Nutrition, 115: 232-243, 2022) was designed to answer those questions.

How Was The Study Done?

clinical studyThe investigators utilized data from The Nurse’s Health Study. They followed 49,493 female nurses for 30 years from 1984 to 2014. The average age of the nurses in 1984 was 48 years, and none of them had symptoms of cognitive decline at the beginning of the study.

The nurse’s diets were analyzed in 1984, 1986, and every 4 years afterwards until 2006. Diets were not analyzed during the last 8 years of the study to eliminate something called “reverse causation”. Simply put, the investigators were trying to eliminate the possibility that participants in the study might change their diet because they were starting to notice symptoms of cognitive decline.

The data from the dietary analyses were used to calculate adherence to 3 different healthy diets:

  • The Mediterranean diet.
  • The DASH diet. The DASH diet was designed to reduce the risk of high blood pressure. But you can think of it as an Americanized version of the Mediterranean diet.
  • The diet recommended by the USDA. Adherence to this diet is evaluated by something called the Alternative Healthy Eating Index or AHEI.

Adherence to each diet was calculated by giving a positive score to foods that were recommended for the diet and a negative score for foods that were not recommended for the diet. For more details, read the article.

In 2012 and 2014 the nurses were asked to fill out questionnaires self-assessing the early stages of cognitive decline. They were asked if they had more trouble than usual:

  • Remembering recent events or remembering a short list of items like a grocery list (measuring memory).
  • Understanding things, following spoken instructions, following a group conversation, or following a plot in a TV program (measuring executive function).
  • Remembering things from one second to the next (measuring attention).
  • Finding ways around familiar streets (measuring visuospatial skills).

The extent of cognitive decline was calculated based on the number of yes answers to these questions.

Can Diet Protect Your Mind?

Vegan FoodsHere is what the investigators found when they analyzed the data:

At the beginning of the study in 1984 there were 49,493 female nurses with an average age of 48. None of them had symptoms of cognitive decline.

  • By 2012-2014 (average age = 76-78) 46.9% of them had cognitive decline and 12.3% of them had severe cognitive decline.

Using the data on dietary intake and the rating systems specific to each of the diets studied, the investigators divided the participants into thirds based on their adherence to each diet. The investigators then used these data to answer two important questions that no previous study had answered:

#1: What is the effect of long-term adherence to a healthy diet? To answer this question the investigators averaged the dietary data obtained every 4 years between 1984 and 2006 to obtain cumulative average scores for adherence to each diet. When the investigators compared participants with the highest adherence to various healthy diets for 30 years to participants with the lowest adherence to those diets, the risk of developing severe cognitive decline was decreased by:

  • 40% for the Mediterranean diet.
  • 32% for the DASH diet.
  • 20% for the USDA-recommended healthy diet (as measured by the AHEI score).

#2: Can you reduce your risk of cognitive decline if you switch from an unhealthy diet to a healthy diet? To answer this question, the investigators looked at participants who started with the lowest adherence to each diet and improved to the highest adherence by the end of the study. This study showed that improving from an unhealthy diet to a healthy diet over 30 years decreased the risk of developing severe cognitive decline by:

  • 20% for the Mediterranean diet.
  • 25% for the DASH diet.

There were a few other significant observations from this study.

  • The inverse association between healthy diets and risk of cognitive decline was greater for nurses who had high blood pressure.
    • This is an important finding because high blood pressure increases the risk of cognitive decline.
  • The inverse association between healthy diets and risk of cognitive decline was also greater for nurses who did not have the APOE-ɛ4 gene.
    • This illustrates the interaction of diet and genetics. The APOE-ɛ4 gene increases the risk of cognitive decline. Healthy diets reduced the risk of cognitive decline in nurse with the APOE-ɛ4 gene but not to the same extent as for nurses without the gene.

This study did not investigate the mechanism by which healthy diets reduced the risk of cognitive decline, but the investigators speculated it might be because these diets:

  • Were anti-inflammatory.
  • Supported the growth of healthy gut bacteria.

The investigators concluded, “Our findings support the beneficial roles of long-term adherence to the [Mediterranean, DASH, and USDA] dietary patterns for maintaining cognition in women…Further, among those with initially relatively low-quality diets, improvement in diet quality was associated with a lower likelihood of developing severe cognitive decline. These findings indicate that improvements in diet quality in midlife and later may have a role in maintenance of cognitive function among women.”

Which Diet Is Best?

Mediterranean Diet FoodsIn a sense this is a trick question. That’s because this study did not put the participants on different diets. It simply analyzed the diets the women were eating in different ways. And while the algorithms they were using were diet-specific, there was tremendous overlap between them. For more specifics on the algorithms used to estimate adherence to each diet, read the article.

That is why the investigators concluded that all three diets they analyzed reduced the risk of cognitive decline rather than highlighting a specific diet. However, based on this and numerous previous studies the evidence is strongest for the Mediterranean and DASH diets.

And I would be remiss if I didn’t also mention the MIND diet. While it was not included in this study, the MIND diet:

  • Was specifically designed to reduce cognitive decline.
  • Can be thought of as a combination of the Mediterranean and DASH diets.
  • Includes data from studies on the mind-benefits of individual foods. For example, it recommends berries rather than all fruits.

The MIND diet has not been as extensively studied as the Mediterranean and DASH diets, but there is some evidence that it may be more effective at reducing cognitive decline than either the Mediterranean or DASH diets alone.

Which Foods Are Best?

AwardThe authors of this study felt it was more important to focus on foods rather than diets. This is a better approach because we eat foods rather than diets. With that in mind they analyzed their data to identify the foods that prevented cognitive decline and the foods increased cognitive decline. This is what they found:

  • Fruits, fruit juices, vegetables, fish, nuts, legumes, low-fat dairy, and omega-3 fatty acids (fish oil) reduced the risk of cognitive decline.
  • Red and processed meats, omega-6 fatty acids (most vegetable oils), and trans fats increased the risk of cognitive decline.

While this study did not specifically look at the effect of processed foods on cognitive decline, diets high in the mind-healthy foods listed above are generally low in sodas, sweets, and highly processed foods.

What Does This Study Mean For You?

Question MarkThe question, “Can diet protect your mind”, is not a new one. Several previous studies have suggested that healthy diets reduce the risk of cognitive decline, but this study breaks new ground. It shows for the first time that:

  • Long-term adherence to a healthy diet can reduce your risk of cognitive decline by up to 40%.
    • This was a 30-year study, so we aren’t talking about “diet” in the traditional sense. We aren’t talking about short-term diets to drop a few pounds. We are talking about a life-long change in the foods we eat.
  • If you currently have a lousy diet, it’s not too late to change. You can reduce your risk of cognitive decline by switching to a healthier diet.
    • This is perhaps the best news to come out of this study.

Based on current evidence, the best diets for protecting against cognitive decline appear to be the Mediterranean, DASH, and MIND diets.

And if you don’t like restrictive diets, my advice is to:

  • Eat more fruits, fruit juices, vegetables, fish, nuts, legumes, low-fat dairy, and omega-3 fatty acids (fish oil).
  • Eat less red and processed meats, omega-6 fatty acids (most vegetable oils), and trans fats.
  • Eat more plant foods and less animal foods.
  • Eat more whole foods and less sodas, sweets, and processed foods.

And, of course, a holistic approach is always best. Other lifestyle factors that help reduce your risk of cognitive decline include:

  • Regular exercise.
  • Weight control.
  • Socialization.
  • Memory training (mental exercises).

The Bottom Line 

Alzheimer’s is a scary disease. What is the use of having a healthy body, family, and fortune if we can’t even recognize the people around us?

A recent study looked at the effect of diet on cognitive decline in women. The study started with middle-aged women (average age = 48) and followed them for 30 years. The investigators then used these data to answer two important questions that no previous study had answered:

#1: What is the effect of long-term adherence to a healthy diet? When the investigators compared participants with the highest adherence to various healthy diets for 30 years to participants with the lowest adherence to those diets, the risk of developing severe cognitive decline was decreased by:

  • 40% for the Mediterranean diet.
  • 32% for the DASH diet.
  • 20% for the USDA recommendations for a healthy diet.

#2: Can you reduce your risk of cognitive decline if you switch from an unhealthy diet to a healthy diet? This study showed that improving from an unhealthy diet to a healthy diet over 30 years decreased the risk of developing severe cognitive decline by:

  • 20% for the Mediterranean diet.
  • 25% for the DASH diet.

The investigators concluded, “Our findings support the beneficial roles of long-term adherence to the [Mediterranean, DASH, and USDA] dietary patterns for maintaining cognition in women…Further, among those with initially relatively low-quality diets, improvement in diet quality was associated with a lower likelihood of developing severe cognitive decline. These findings indicate that improvements in diet quality in midlife and later may have a role in maintenance of cognitive function among women.”

For more details on the study, which diets, and which foods are best for protecting your mind, and what this study means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

How Much Omega-3s Do Children Need?

What Does This Study Mean For Your Children?

Author: Dr. Stephen Chaney 

It is back to school time again. If you have children, you are probably rushing around to make sure they are ready.

  • Backpack…Check.
  • Books…Check
  • School supplies…Check
  • Omega-3s…???

Every parent wants their child to do their best in school. But do they need omega-3s to do their best? I don’t need to tell you that question is controversial.

Some experts claim that omega-3 supplementation in children improves their cognition. [Note: Cognition is defined as the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses. In layman’s terms that means your child’s ability to learn.]

Other experts point out that studies in this area disagree. Some studies support these claims. Others don’t. Because the studies disagree these experts conclude there is no good evidence to support omega-3 supplementation in children.

The authors of this study (ISM van der Wurff et al, Nutrients, 12: 3115, 2020) took a different approach. They asked why these studies disagreed. They hypothesized that previous studies disagreed because there is a minimal dose of omega-3s needed to achieve cognitive benefits in children. In short, they were asking how much omega-3s do children need.

They based their hypothesis on recent studies showing that a minimum dose of omega-3s is required to show heart health benefits in adults.

What Have We Learned From Studies on Omega-3s And Heart Health?

Omega-3s And Heart DiseaseThe breakthrough in omega-3/heart health studies came with the development of something called the omega-3 index. Simply put, omega-3s accumulate in our cell membranes. The omega-3 index is the percent omega-3s in red blood cell membranes and is a good measure of our omega-3 status.

Once investigators began measuring the omega-3 index in their studies and correlating it with heart health, it became clear that:

  • An omega-3 index of ≤4% correlated with a high risk of heart disease.
  • An omega-3 index of ≥8% correlated with a low risk of heart disease.
  • Most Americans have an omega-3 index in the 4-6% range.
  • Clinical studies in which participants’ omega-3 index started in the low range and increased to ~8% through supplementation generally showed a positive effect of omega-3s on reducing heart disease risk. [I say generally because there are other factors in study design that can obscure the effect of omega-3s.]

This is the model that the authors adopted for their study. They asked how much omega-3s do children need to show a positive effect of omega-3s on their cognition (ability to learn).

How Was The Study Done?

Clinical StudyThe authors included 21 studies in their analysis that met the following criteria:

  • All studies were placebo controlled randomized clinical trials.
  • The participants were 4-25 years old and had not been diagnosed with ADHD.
  • Supplementation was with the long-chain omega-3s DHA and/or EPA.
  • The trial assessed the effect of omega-3 supplementation on cognition.

I do not want to underestimate the difficulties the authors faced in their quest. The individual studies differed in:

  • The dose of omega-3s.
    • The relative amount of DHA and EPA.
    • Whether omega-3 index was measured. Only some of the studies measured fatty acid levels in the blood. The authors were able to calculate the omega-3 index in these studies.
  • How cognition (ability to learn) was measured.
  • The age of the children.
    • 20 of the studies were done with children (4-12 years old) or late adolescents (20-25 years old).
    • Only one study was done on early to middle adolescents (12-20 years old).
  • All these variables influence the outcome and could obscure the effect of omega-3s on cognition.

In short, determining the omega-3 dose-response for an effect on cognition was a monumental task. It was like searching for a needle in a haystack. These authors did a remarkable job.

How Much Omega-3s Do Children Need?

Child Raising HandHere is what the scientists found when they analyzed the data:

  • 60% of the studies in which an omega-3 index of ≥6% was achieved showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 20% of the studies that did not achieve an omega-3 index of 6%.
    • That is a 3-fold difference in effectiveness once a threshold of 6% omega-3 index was reached.
  • 50% of the studies in which a dose of ≥ 450 mg/day of DHA + EPA was used showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 25% of the studies that used <450 mg/day DHA + EPA.
    • That is a 2-fold difference in effectiveness once a threshold of 450 mg/day DHA + EPA was given.

The authors concluded, “Daily supplementation of ≥450 mg/day DHA and/or EPA and an increase in the omega-3 index to >6% makes it more likely to show efficacy [of omega-3s] on cognition (ability to learn) in children and adolescents.”

What Does This Study Tell Us?

Question MarkIt is important to understand what this study does and does not tell us.

This study does not:

  • Prove that omega-3 supplementation can improve cognition (ability to learn) in children and adolescents.
  • Define optimal levels of DHA + EPA.
  • Tell us whether DHA, EPA, or a mixture is better.

It was not designed to do any of these things. It was designed to give us a roadmap for future studies. It tells us how to design studies that can provide definitive answers to these questions.

This study does:

  • Define a threshold dose of DHA + EPA for future studies (450 mg/day).
  • Tells us how to best use the omega-3 index in future studies. To obtain meaningful results:
    • Participants should start with an omega-3 index of 4% or less.
    • Participants should end with an omega-3 index of 6% or greater.
  • In my opinion, future studies would also be much more effective if scientists in this area of research could agree on a single set of cognitive measures to be used in all subsequent studies.

In short, this study provides critical information that can be used to design future studies that will be able to provide definitive conclusions about omega-3s and cognition in children.

What Does This Study Mean For Your Children?

child geniusAs a parent or grandparent, you probably aren’t interested in optimizing the design of future clinical studies. You want answers now.

Blood tests for omega-3 index are available, but they are not widely used. And your insurance may not cover them.

So, for you the most important finding from this study is that 450 mg/day DHA + EPA appears to be the threshold for improving a child’s cognition (their ability to learn).

  • 450 mg/day is not an excessive amount. The NIH defines adequate intakes for omega-3s as follows:
  • 4-8 years: 800 mg/day
  • 9-13 years: 1 gm/day for females, 1.2 gm/day for males
  • 14-18 years: 1.1 gm/day for females and 1.6 gm/day for males.
  • With at least 10% of that coming from DHA + EPA

Other organizations around the world recommend between 100 mg/day and 500 mg/day DHA + EPA depending on the age and weight of the child and the organization.

  • Most children need supplementation to reach adequate omega-3 intake. The NIH estimates the average child only gets around 40 mg/day omega-3s from their diet. No matter which recommendation you follow, it is clear that most children are not getting the recommended amount of DHA + EPA in their diet.
  • Genetics.
  • Diet.
  • Environment.
  • The value placed on learning by parents and peers.

Supplementation is just one factor in your child’s ability to learn. But it is one you can easily control. . And if your child is like most, he or she is probably not getting enough omega-3s in their diet.

The Bottom Line 

It is back to school time again. Every parent wants their child to do their best in school. But do they need omega-3s to do their best? I don’t need to tell you that question is controversial.

Some studies support these claims, but others don’t. Because the studies disagree some experts conclude there is no good evidence to support omega-3 supplementation in children.

The authors of a recent study took a different approach. They asked why these studies disagreed. They hypothesized that previous studies disagreed because there was a minimal dose of omega-3s needed to achieve cognitive benefits in children. They asked how much omega-3s children need.

They analyzed the data from 21 previous studies looking at the effect of omega-3 supplementation on cognition (ability to learn) in children and adolescents. Their analysis showed:

  • 60% of the studies in which an omega-3 index of ≥6% was achieved showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 20% of the studies that did not achieve an omega-3 index of 6%.
    • That is a 3-fold difference in effectiveness once a threshold of 6% omega-3 index was reached.
  • 50% of the studies in which a dose of ≥ 450 mg/day of DHA + EPA was used showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 25% of the studies that used <450 mg/day DHA + EPA.
    • That is a 2-fold difference in effectiveness once a threshold dose of 450 mg/day DHA + EPA was given.

The authors concluded, “Daily supplementation of ≥450 mg/day DHA + EPA and an increase in the omega-3 index to >6% makes it more likely to show efficacy [of omega-3s] on cognition (ability to learn) in children and adolescents.”

For more details on the study and what it means for your children and grandchildren, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Health Tips From The Professor