How Long Do the Benefits of Supplements Last?

Written by Dr. Steve Chaney on . Posted in Benefits of Supplememnts

Can Supplements Set You On A Path Towards A Healthier Life?

Author: Dr. Stephen Chaney

 

benefits of supplements heartA recent study (U Alehagen et al, PLOS One, April 11, 2018, 1-15 ) reported that the heart benefits of supplementation with coenzyme Q10 and selenium persisted for 12 years after supplementation ended. You would have thought a story like that would have made the headlines. Nope. Hardly a mention. Perhaps it did not match the narrative of the media and health professionals that supplements are worthless.

This study broke new ground. Most studies last a year or two and report whether there were any benefits of supplementation. A few studies have been extended a few years beyond the original supplementation period and have reported continued benefits of supplementation. However, in those studies the intervention group was still taking supplements. The intervention period was simply extended.

However, this study was unique in that supplementation was discontinued after 4 years. However, the positive effects of supplementation during that four-year period persisted for another 12 years without additional supplementation.

 

How Was The Study Done?

benefits of supplements monitoring heartIn this study 443 elderly individuals (average age =78) were recruited from a rural village in Sweden. They were given either supplements providing 200 mg/day of coenzyme Q10 and 200 mcg/day of selenium yeast or placebo pills. They were followed for four years. At this point the intervention phase of the trial ended, and the participants were followed for another 12 years without supplementation.

Cardiovascular deaths and all-cause mortality were recorded at 4 years (the end of the original intervention period), 10 years, and 12 years. The Swedish health care system is incredibly efficient. None of the participants were lost to follow-up.

Note on study design: Both coenzyme Q10 and selenium have heart health benefits and they compliment each other. Coenzyme Q10 was included in this study because our bodies lose the ability to make coenzyme Q10 as we age. By the time we reach age 80, we only make around half the coenzyme Q10 we made when we were younger. Selenium was included in the study because most Swedes are selenium deficient.

This study measured selenium levels and confirmed that all participants were selenium deficient at the beginning of the study. Selenium levels increased to near optimal in the supplemented group during the 4-year intervention period. In contrast, the placebo group remained selenium deficient.

 

How Long Do the Benefits of Supplements Last?

benefits of supplementationThe results of the study were truly amazing.

When you compared the group that had received coenzyme Q10 and selenium during the first 4 years of the study with the placebo group:

  • Cardiovascular mortality was 38% less and all-cause mortality was 24% less 12 years later in the supplement group.
  • The decrease in cardiovascular mortality lessened slightly with time (53% lower at 4 years, 46% lower at 10 years, and 38% lower at 12 years.
  • In contrast, the decrease in all-cause mortality remained relatively constant.
  • The effect was greater for women (who have lower coenzyme Q10 levels than men) than it was for men.
  • The decrease in cardiovascular mortality was 57% for women and 22% for men.
  • Cardiovascular mortality was decreased by 40-50% for people at high risk of cardiovascular death because of atherosclerosis, diabetes, high blood pressure, or impaired heart function.

Putting This Study Into Perspective

benefits of supplements wellnessI don’t want to read too much into this study. It has multiple limitations:

  • It is a very small study.
  • It is the first study I am aware of that has followed study participants years after supplementation has ended. More studies like this are clearly needed before any firm conclusions can be drawn.
  • It may be unique to Sweden where selenium deficiency is widespread. Selenium deficiency is much less prevalent in some other countries such as the United States.
  • It is possible that once the study population heard about the results of the initial 4-year study they started self-supplementing with coenzyme Q10 and selenium. However, since the participants did not know whether they were in the supplement or placebo group, that would likely affect both groups equally.

However, it is the implications of the study that fascinate me.

  • The authors of the study speculated that the improvement in endothelial cell function (Endothelial cells line the arteries and play an important role in arterial health) and/or decreased inflammation may have persisted long after supplementation stopped.
  • A more interesting idea is that supplementation (or the effects of supplementation) caused modifications to the DNA that were persistent (something we refer to as epigenetics). Moreover, those DNA modifications may have altered gene expression in a manner that reduced heart disease risk.

Much more work needs to be done before we know whether epigenetic modifications were responsible for the persistent benefit of supplementation in this, or any other, study. However, the ramifications of this idea are substantial. We think of supplementation as something that provides benefit only while we are taking the supplement. What if, under the right conditions, supplementation could send us down an entirely different path to better health? That would be worth major headlines.

 

The Bottom Line

 

A recent study in Sweden looked at the effects of supplementation with coenzyme Q10 and selenium on heart health 12 years after supplementation had ended.

  • The study reported that cardiovascular mortality was 38% less and all-cause mortality was 24% less 12 years later in the group that supplemented during the first 4 years.

The study has multiple limitations and needs to be repeated before drawing any definite conclusions. However, if true, it has interesting implications. What if the benefits of supplementation didn’t stop when you stopped supplementing? What if supplementation sent you down an entirely different path, a path towards better health?

For more details, read the article above.

 

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

 

Trackback from your site.

Comments (2)

  • ken

    |

    How long did the individuals have to take the supplements to achieve the results?

    Reply

  • Hamilton C McKelvey

    |

    Hi Dr. Steve, This article was interesting. AS you say, more studies would have to be done. I am 91 years of age and have been a long time Shaklee user. I have taken CoQHeart for decades. Last year we ran out of CoQHeart for 4 or 5 days. I got the feeling of being energy depleted. Our Shaklee order arrived and I took CoQHeart. Within about 4 or 5 hours, the feeling of reduced energy had left. So as you say, there are many considerations to make with this subject. Thanks for all the great info you send out to us. God bless, Ham McKelvey mckentwa2@gmail.com

    Reply

Leave a comment

Recent Videos From Dr. Steve Chaney

READ THE ARTICLE
READ THE ARTICLE

Latest Article

Is Our Microbiome Affected By Exercise?

Posted November 6, 2018 by Dr. Steve Chaney

Microbiome Mysteries

Author: Dr. Stephen Chaney

is our microbiome affected by exerciseIn a recent post,  What is Your Microbiome and Why is it Important,  of “Health Tips From The Professor” I outlined how our microbiome, especially the bacteria that reside in our intestine, influences our health. That influence can be either good or bad depending on which species of bacteria populate our gut. I also discussed how the species of bacteria that populate our gut are influenced by what we eat and, in turn, influence how the foods we eat are metabolized.

I shared that there is an association between obesity and the species of bacteria that inhabit our gut. At present, this is a “chicken and egg” conundrum. We don’t know whether obesity influences the species of bacteria that inhabit our gut, or whether certain species of gut bacteria cause us to become obese.

Previous studies have shown that there is also an association between exercise and the species of bacteria that inhabit our gut. In particular, exercise is associated with an increase in bacteria that metabolize fiber in our diets to short chain fatty acids such as butyrate. That is potentially important because butyrate is a primary food source for intestinal mucosal cells (the cells that line the intestine). Butyrate helps those cells maintain the integrity of the gut barrier (which helps prevent things like leaky gut syndrome). It also has an anti-inflammatory effect on the immune cells that reside in the gut.

However, associations don’t prove cause and effect. We don’t know whether the differences in gut bacteria were caused by differences in diet or leanness in populations who exercised regularly and those who did not. This is what the present study (JM Allen et al, Medicine & Science In Sports & Exercise, 50: 747-757, 2018 ) was designed to clarify.  Is our microbiome affected by exercise?

 

How Was The Study Designed?

is our microbiome affected by exercise studyThis study was performed at the University of Illinois. Thirty-two previously sedentary subjects (average age = 28) were recruited for the study. Twenty of them were women and 12 were men. Prior to starting the study, the participants filled out a 7-day dietary record. They were asked to follow the same diet throughout the 12-week study. In addition, a dietitian designed a 3-day food menu based on their 7-day recall for the participants to follow prior to each fecal collection to determine species of gut bacteria.

The study included a two-week baseline when their baseline gut bacteria population was measured, and participants were tested for fitness. This was followed by a 6-week exercise intervention consisting of three supervised 30 to 60-minute moderate to vigorous exercise sessions per week. The exercise was adapted to the participant’s initial fitness level, and both the intensity and duration of exercise increased over the 6-week exercise intervention. Following the exercise intervention, all participants were instructed to maintain their diet and refrain from exercise for another 6 weeks. This was referred to as the “washout period.”

VO2max (a measure of fitness) was determined at baseline and at the end of the exercise intervention. Stool samples for determination of gut bacteria and concentrations of short-chain fatty acids were taken at baseline, at the end of the exercise intervention, and again after the washout period.

In short, this study divided participants into lean and obese categories and held diet constant. The only variable was the exercise component.

 

Is Our Microbiome Affected By Exercise?

is our microbiome affected by exercise fitnessThe results of the study were as follows:

  • Fitness, as assessed by VO2max, increased for all the participants, and the increase in fitness was comparable for both lean and obese subjects.
  • Exercise induced a change in the population of gut bacteria, and the change was comparable in lean and obese subjects.
  • Exercise increased fecal concentrations of butyrate and other short-chain fatty acids in the lean subjects, but not in obese subjects.
  • The exercise-induced changes in gut bacteria and short-chain fatty acid production were largely reversed once exercise training ceased.

The authors concluded: “These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet, and contingent on the sustainment of exercise.” [Note: To be clear, the exercise-induced changes in both gut bacteria and short-chain fatty acid production were independent of diet and contingent on the sustainment of exercise. However, only the production of short-chain fatty acids was dependent on obesity status.]

 

What Does This Study Mean For You?

is our microbiome affected by exercise gut bacteriaThere are two important take home lessons from this study.

  • With respect to our gut bacteria, I have consistently told you that microbiome research is an emerging science. This is a small study, so you should regard it as the beginning of our understanding of the effect of exercise on our microbiome rather than conclusive by itself. It is consistent with previous studies showing an association between exercise and a potentially beneficial shift in the population of gut bacteria.

The strength of the study is that it shows that exercise-induced changes in beneficial gut bacteria are probably independent of diet. However, it is the first study to look at the interaction between obesity, exercise and gut bacteria, so I would interpret those results with caution until they have been replicated in subsequent studies.

  • With respect to exercise, this may be yet another reason to add regular physical activity to your healthy lifestyle program. We already know that exercise is important for cardiovascular health. We also know that exercise increases lean muscle mass which increases metabolic rate and helps prevent obesity. There is also excellent evidence that exercise improves mood and helps prevent cognitive decline as we age.

Exercise is also associated with decreased risk of colon cancer and irritable bowel disease. This effect of exercise has not received much attention because the mechanism of this effect is unclear. This study shows that exercise increases the fecal concentrations of butyrate and other short-chain fatty acids. Perhaps, this provides the mechanism for the interaction between exercise and intestinal health.

 

The Bottom Line

A recent study has reported that:

  • Exercise induces a change in the population of gut bacteria, and the change was comparable in lean and obese subjects.
  • Exercise causes an increase in the number of gut bacteria that produce butyrate and other short-chain fatty acids that are beneficial for gut health.
  • These effects are independent of diet, but do not appear to be independent of obesity because they were seen in lean subjects but not in obese subjects.
  • The exercise-induced changes in gut bacteria and short-chain fatty acid production are largely reversed once exercise training ceases.

The authors concluded: “These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent on diet, and contingent on the sustainment of exercise.”

For more details and my interpretation of the data, read the article above.

 

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

UA-43257393-1