Leucine And Muscle Gain

Written by Dr. Steve Chaney on . Posted in current health articles, Exercise, Fitness and Health, Food and Health, Healthy Living, Muscle Therapy and Health, Supplements and Health

Should Your Post-Workout Protein Shake Contain Added Leucine?

Author: Dr. Stephen Chaney

 

If you are an athlete – or just someone who is exercising to create a lean and healthy body, you are probably interested in increasing your lean muscle mass following each workout. You may leucinealready use leucine.  Of course, if you read any of the “muscle magazines”, you’ve seen the ads. “Explode Your Muscles.” “Double Your Gains.” They all claim to have the perfect post-workout protein shake, backed by science. They all sound so tempting, but you know that some of them have to be scams.

I told you about some of the sports supplements to avoid in previous “Health Tips From the Professor”. In this issue, I’m going to ask “What does the perfect post-workout protein shake look like?

For years athletes have been using protein beverages containing branched chain amino acids after their workouts to maximize muscle gain and recovery. There was some science behind that practice, but the major questions were unanswered. Nobody really knew:

  • How much protein is optimal?
  • What kind of protein is optimal?
  • What amount of branched chain amino acids is optimal?
  • Are some branched chain amino acids more important than others?
  • Does the optimal amount of branched chain amino acids depend on the amount of protein?

As a consequence, after workout protein supplements were all over the map in terms of protein source, protein amount, branched amino acid amount and type of branched chain amino acids. Fortunately, recent research has clarified many of these questions.

How Much Protein Do You Need and What Kind?

  • Recent research has shown that the optimal protein intake for maximizing muscle gain post workout is 15-20 gm for young adults (Katsanos et al, Am J Clin Nutr 82: 1065-1073, 2005; Moore et al, Am J Clin Nutr, 89: 161-168, 2009) and 20-25 gm for older adults (Symons et al, Am J Clin Nutr 86: 451-456, 2007).
  • More protein isn’t necessarily better. The effect of protein intake on post workout muscle gain maxes out at around 25 gm for young adults and 30 gm for older adults (Symons et al, J Am Diet Assoc 109: 1582-1586, 2009).
  • Whey protein is the best choice for enhancing muscle gain immediately after a workout. Other protein sources (soy, pea, casein, chicken) are better choices for sustaining muscle gain over the next few hours.

Leucine: The Only Branched Chain Amino Acid To Stimulate Muscle Protein

  • branched chain amino acidIt turns out that leucine is the only branched chain amino acid that actually stimulates muscle protein synthesis (Am J Physiol Endocrinol Metab 291: E381-E387, 2006). And protein is what gives muscles their strength and their bulk.
  • Recent research has shown that 2-3 gm of leucine (2 gm for young adults; 3 gm for older adults) is sufficient to maximize post workout muscle gain if protein levels are adequate (Am J Physiol Endocrinol Metab 291: E381-E387, 2006).

Unanswered Questions About Optimizing Muscle Gain Post-Workout

  • Do the other branched chain amino acids play a supporting role, or is leucine alone sufficient to drive post-workout muscle gain?
  • Can leucine still help maximize post-workout muscle gain if protein intake is inadequate? If so, how much leucine is needed?

Does Leucine Enhancement Improve Low Protein Shakes?

A recent study (Churchward-Venne et al, Am J Clin Nutr, 99: 276-286, 2014) seems to answer those two questions. The authors compared the effect of 5 protein-amino acid combinations on best post workout shakemuscle protein synthesis in 40 young men (~21 years old) following unilateral knee-extensor resistance exercise. The protein shakes contained:

  • 25 gm of whey protein, which naturally contains 3 gm of leucine (high protein)
  • 6.25 gm of whey protein, which naturally contains 0.76 gm of leucine (low protein)
  • 6.25 gm of whey protein with 3 gm of leucine (low protein, low leucine)
  • 6.25 gm of whey protein with 5 gm of leucine (low protein, high leucine)
  • 6.25 gm of whey protein with 5 gm of leucine + added isoleucine and valine (the other branched chain amino acids). (low protein, branched chain amino acids).

The results were clear cut:

  • The high protein shake (25 gm of protein) was far superior to the low protein shake (6.25 gm of protein) at enhancing post workout protein synthesis. This is consistent with numerous other published clinical reports.
  • Adding 3 gm of leucine to the low protein shake had no effect on post-workout protein synthesis, but 5 gm of added leucine made the low protein shake just as effective as the high protein shake at supporting post-workout protein synthesis.

In short, leucine can improve the effectiveness of a low protein shake, but you need more leucine than if you chose the high protein shake to begin with.

  • Adding extra branched chain amino acids actually suppressed the effectiveness of leucine at enhancing post-workout protein synthesis. These data suggest:
    • Leucine probably is the major amino acid responsible for the muscle gain reported in many of the previous studies with branched chain amino acids.
    • If the other branched chain amino acids play a supporting role in the muscle gain, the quantities that occur naturally in the protein are probably enough. Adding more may actually reduce the effectiveness of leucine at stimulating muscle gain.

While this is a single study, it is consistent with numerous other recent clinical studies. It simply helps clarify whether leucine can increase the effectiveness of a low protein supplement. It also clarifies the role of branched chain amino acids.

Also, while this study focused on protein synthesis, numerous other studies have shown that optimizing post-workout protein and leucine intake results in greater muscle gain (for example, Westcott et al., Fitness Management, May 2008)

 

The Bottom Line

Research on post-workout nutrition to optimize muscle gain from the workouts has come a long way in recent years. It is now actually possible to make rational choices about the best protein supplements and foods to support your workouts.

  • If you are a young adult (17-30), you should aim for 15-20 gm of protein and about 2 gm of leucine after your workout.
  • If you are an older adult (50+), you should aim for 20-25 gm of protein and 3 gm of leucine after your workout.
  • If you are in between you are on your own. Studies haven’t yet been done in your age group, but it’s reasonable to assume that you should aim for somewhere between the extremes.
  • If you are getting the recommended amounts of whey protein, the leucine level may also be optimal. If you are using other protein sources you may want to choose ones with added leucine.
  • The research cited above shows that you can make a low protein supplement effective by adding lots of leucine, but that’s going to require artificial flavors and sweeteners to cover up the taste of that much leucine. I would recommend choosing one that provided adequate protein to begin with.
  • While the research in this area is still somewhat fluid, I would avoid protein supplements with added branched chain amino acids other than leucine. If the paper I cited above is correct, you probably get all of the other branched chain amino acids you need from your protein and adding more may actually interfere with the effect of leucine on muscle gain.
  • I’d pretty much forget all the other “magic ingredients” in post-workout supplements. If you’re a novice there is some evidence that arginine and HMB may be of benefit, but if you have been working out for more than 6 months, the evidence is mixed at best. As for the rest, the clinical studies are all over the map. There’s no convincing evidence that they work.
  • Whey protein is the best choice for enhancing muscle gain immediately after your workout. Soy, pea, and casein are better choices for sustaining muscle gain over the next few hours. If you’re looking at meat protein, chicken is a particularly good choice. Four ounces of chicken will provide the protein and leucine you need to sustain muscle gain for several hours.

Even if you are not working out, recent research on dietary protein and leucine has important implications for your health. In a recent “Health Tips From the Professor” High Protein Diets and Weight Loss, I shared research showing that optimizing protein and leucine intake helps to increase muscle retention and maximize fat loss when you are losing weight.

 

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Trackback from your site.

Leave a comment

Recent Videos From Dr. Steve Chaney

READ THE ARTICLE
READ THE ARTICLE

Latest Article

One of the Little known Causes of Headaches

Posted August 15, 2017 by Dr. Steve Chaney

Your Sleeping Position May Be Causing Your Headaches!

Author: Julie Donnelly, LMT – The Pain Relief Expert

Editor: Dr. Steve Chaney

 

Can sleeping position be one of the causes of headaches?  

A Sleeping position that has your head tilted puts pressure on your spinal cord and will cause headaches. I’ve seen it happen hundreds of times, and the reasoning is so logical it’s easy to understand.

causes of headachesYour spinal cord runs from your brain, through each of your vertebrae, down your arms and legs. Nerves pass out of the vertebrae and go to every cell in your body, including each of your organs. When you are sleeping it is important to keep your head, neck, and spine in a horizontal plane so you aren’t straining the muscles that insert into your vertebrae.

The graphic above is a close-up of your skull and the cervical (neck) vertebrae. Your nerves are shown in yellow, and your artery is shown in red.  Consider what happens if you hold your head to one side for hours. You can notice that the nerves and artery will likely be press upon. Also, since your spinal cord comes down the inside of the vertebrae, it will also be impinged.

In 2004 the Archives of Internal Medicine published an article stating that 1 out of 13 people have morning headaches. It’s interesting to note that the article never mentions the spinal cord being impinged by the vertebrae. That’s a major oversight!

Muscles merge into tendons, and the tendons insert into the bone.  As you stayed in the tilted position for hours, the muscles actually shortened to the new length.  Then you try to turn over, but the short muscles are holding your cervical vertebrae tightly, and they can’t lengthen.

The weight of your head pulls on the vertebrae, putting even more pressure on your spinal cord and nerves.  Plus, the tight muscles are pulling on the bones, causing pain on the bone.

Your Pillow is Involved in Your Sleeping Position and the Causes of  Headaches

sleep left side

The analogy I always use is; just as pulling your hair hurts your scalp, the muscle pulling on the tendons hurts the bone where it inserts.  In this case it is your neck muscles putting a strain on your cervical bones.  For example, if you sleep on your left side and your pillow is too thick, your head will be tilted up toward the ceiling. This position tightens the muscles on the right side of your neck.

sleeping in car and desk

Dozing off while sitting in a car waiting for someone to arrive, or while working for hours at your desk can also horizontal line sleepcause headaches. The pictures above show a strain on the neck when you fall asleep without any support on your neck. Both of these people will wake up with a headache, and with stiffness in their neck.

The best sleeping position to prevent headaches is to have your pillow adjusted so your head, neck, and spine are in a horizontal line. Play with your pillows, putting two thin pillows into one case if necessary. If your pillow is too thick try to open up a corner and pull out some of the stuffing.

 

sleeping on stomachSleeping on Your Back & Stomach

If you sleep on your back and have your head on the mattress, your spine is straight. All you need is a little neck pillow for support, and a pillow under your knees.

Stomach sleeping is the worst sleeping position for not only headaches, but so many other aches and pains. It’s a tough habit to break, but it can be done. This sleeping position deserves its own blog, which I will do in the future.

 

Treating the Muscles That Cause Headaches

sleeping position causes of headachesAll of the muscles that originate or insert into your cervical vertebrae, and many that insert into your shoulder and upper back, need to be treated.  The treatments are all taught in Treat Yourself to Pain Free Living, in the neck and shoulder chapters.  Here is one treatment that will help you get relief.

Take either a tennis ball or the Perfect Ball (which really is Perfect because it has a solid center and soft outside) and press into your shoulder as shown.  You are treating a muscle called Levator Scapulae which pulls your cervical vertebrae out of alignment when it is tight.

Hold the press for about 30 seconds, release, and then press again.

Your pillow is a key to neck pain and headaches caused by your sleeping position.  It’s worth the time and energy to investigate how you sleep and correct your pillow.  I believe this blog will help you find the solution and will insure you have restful sleep each night.

Wishing you well,

Julie Donnelly

 

About The Author

julie donnelly

Julie Donnelly is a Deep Muscle Massage Therapist with 20 years of experience specializing in the treatment of chronic joint pain and sports injuries. She has worked extensively with elite athletes and patients who have been unsuccessful at finding relief through the more conventional therapies.

She has been widely published, both on – and off – line, in magazines, newsletters, and newspapers around the country. She is also often chosen to speak at national conventions, medical schools, and health facilities nationwide.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

UA-43257393-1