One of the Little known Causes of Headaches

Written by Dr. Steve Chaney on . Posted in Headaches

Your Sleeping Position May Be Causing Your Headaches!

Author: Julie Donnelly, LMT – The Pain Relief Expert

Editor: Dr. Steve Chaney

 

Can sleeping position be one of the causes of headaches?  

A Sleeping position that has your head tilted puts pressure on your spinal cord and will cause headaches. I’ve seen it happen hundreds of times, and the reasoning is so logical it’s easy to understand.

causes of headachesYour spinal cord runs from your brain, through each of your vertebrae, down your arms and legs. Nerves pass out of the vertebrae and go to every cell in your body, including each of your organs. When you are sleeping it is important to keep your head, neck, and spine in a horizontal plane so you aren’t straining the muscles that insert into your vertebrae.

The graphic above is a close-up of your skull and the cervical (neck) vertebrae. Your nerves are shown in yellow, and your artery is shown in red.  Consider what happens if you hold your head to one side for hours. You can notice that the nerves and artery will likely be press upon. Also, since your spinal cord comes down the inside of the vertebrae, it will also be impinged.

In 2004 the Archives of Internal Medicine published an article stating that 1 out of 13 people have morning headaches. It’s interesting to note that the article never mentions the spinal cord being impinged by the vertebrae. That’s a major oversight!

Muscles merge into tendons, and the tendons insert into the bone.  As you stayed in the tilted position for hours, the muscles actually shortened to the new length.  Then you try to turn over, but the short muscles are holding your cervical vertebrae tightly, and they can’t lengthen.

The weight of your head pulls on the vertebrae, putting even more pressure on your spinal cord and nerves.  Plus, the tight muscles are pulling on the bones, causing pain on the bone.

Your Pillow is Involved in Your Sleeping Position and the Causes of  Headaches

sleep left side

The analogy I always use is; just as pulling your hair hurts your scalp, the muscle pulling on the tendons hurts the bone where it inserts.  In this case it is your neck muscles putting a strain on your cervical bones.  For example, if you sleep on your left side and your pillow is too thick, your head will be tilted up toward the ceiling. This position tightens the muscles on the right side of your neck.

sleeping in car and desk

Dozing off while sitting in a car waiting for someone to arrive, or while working for hours at your desk can also horizontal line sleepcause headaches. The pictures above show a strain on the neck when you fall asleep without any support on your neck. Both of these people will wake up with a headache, and with stiffness in their neck.

The best sleeping position to prevent headaches is to have your pillow adjusted so your head, neck, and spine are in a horizontal line. Play with your pillows, putting two thin pillows into one case if necessary. If your pillow is too thick try to open up a corner and pull out some of the stuffing.

 

sleeping on stomachSleeping on Your Back & Stomach

If you sleep on your back and have your head on the mattress, your spine is straight. All you need is a little neck pillow for support, and a pillow under your knees.

Stomach sleeping is the worst sleeping position for not only headaches, but so many other aches and pains. It’s a tough habit to break, but it can be done. This sleeping position deserves its own blog, which I will do in the future.

 

Treating the Muscles That Cause Headaches

sleeping position causes of headachesAll of the muscles that originate or insert into your cervical vertebrae, and many that insert into your shoulder and upper back, need to be treated.  The treatments are all taught in Treat Yourself to Pain Free Living, in the neck and shoulder chapters.  Here is one treatment that will help you get relief.

Take either a tennis ball or the Perfect Ball (which really is Perfect because it has a solid center and soft outside) and press into your shoulder as shown.  You are treating a muscle called Levator Scapulae which pulls your cervical vertebrae out of alignment when it is tight.

Hold the press for about 30 seconds, release, and then press again.

Your pillow is a key to neck pain and headaches caused by your sleeping position.  It’s worth the time and energy to investigate how you sleep and correct your pillow.  I believe this blog will help you find the solution and will insure you have restful sleep each night.

Wishing you well,

Julie Donnelly

 

About The Author

julie donnelly

Julie Donnelly is a Deep Muscle Massage Therapist with 20 years of experience specializing in the treatment of chronic joint pain and sports injuries. She has worked extensively with elite athletes and patients who have been unsuccessful at finding relief through the more conventional therapies.

She has been widely published, both on – and off – line, in magazines, newsletters, and newspapers around the country. She is also often chosen to speak at national conventions, medical schools, and health facilities nationwide.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Trackback from your site.

Leave a comment

Recent Videos From Dr. Steve Chaney

READ THE ARTICLE
READ THE ARTICLE

Latest Article

Is Our Microbiome Affected By Exercise?

Posted November 6, 2018 by Dr. Steve Chaney

Microbiome Mysteries

Author: Dr. Stephen Chaney

is our microbiome affected by exerciseIn a recent post,  What is Your Microbiome and Why is it Important,  of “Health Tips From The Professor” I outlined how our microbiome, especially the bacteria that reside in our intestine, influences our health. That influence can be either good or bad depending on which species of bacteria populate our gut. I also discussed how the species of bacteria that populate our gut are influenced by what we eat and, in turn, influence how the foods we eat are metabolized.

I shared that there is an association between obesity and the species of bacteria that inhabit our gut. At present, this is a “chicken and egg” conundrum. We don’t know whether obesity influences the species of bacteria that inhabit our gut, or whether certain species of gut bacteria cause us to become obese.

Previous studies have shown that there is also an association between exercise and the species of bacteria that inhabit our gut. In particular, exercise is associated with an increase in bacteria that metabolize fiber in our diets to short chain fatty acids such as butyrate. That is potentially important because butyrate is a primary food source for intestinal mucosal cells (the cells that line the intestine). Butyrate helps those cells maintain the integrity of the gut barrier (which helps prevent things like leaky gut syndrome). It also has an anti-inflammatory effect on the immune cells that reside in the gut.

However, associations don’t prove cause and effect. We don’t know whether the differences in gut bacteria were caused by differences in diet or leanness in populations who exercised regularly and those who did not. This is what the present study (JM Allen et al, Medicine & Science In Sports & Exercise, 50: 747-757, 2018 ) was designed to clarify.  Is our microbiome affected by exercise?

 

How Was The Study Designed?

is our microbiome affected by exercise studyThis study was performed at the University of Illinois. Thirty-two previously sedentary subjects (average age = 28) were recruited for the study. Twenty of them were women and 12 were men. Prior to starting the study, the participants filled out a 7-day dietary record. They were asked to follow the same diet throughout the 12-week study. In addition, a dietitian designed a 3-day food menu based on their 7-day recall for the participants to follow prior to each fecal collection to determine species of gut bacteria.

The study included a two-week baseline when their baseline gut bacteria population was measured, and participants were tested for fitness. This was followed by a 6-week exercise intervention consisting of three supervised 30 to 60-minute moderate to vigorous exercise sessions per week. The exercise was adapted to the participant’s initial fitness level, and both the intensity and duration of exercise increased over the 6-week exercise intervention. Following the exercise intervention, all participants were instructed to maintain their diet and refrain from exercise for another 6 weeks. This was referred to as the “washout period.”

VO2max (a measure of fitness) was determined at baseline and at the end of the exercise intervention. Stool samples for determination of gut bacteria and concentrations of short-chain fatty acids were taken at baseline, at the end of the exercise intervention, and again after the washout period.

In short, this study divided participants into lean and obese categories and held diet constant. The only variable was the exercise component.

 

Is Our Microbiome Affected By Exercise?

is our microbiome affected by exercise fitnessThe results of the study were as follows:

  • Fitness, as assessed by VO2max, increased for all the participants, and the increase in fitness was comparable for both lean and obese subjects.
  • Exercise induced a change in the population of gut bacteria, and the change was comparable in lean and obese subjects.
  • Exercise increased fecal concentrations of butyrate and other short-chain fatty acids in the lean subjects, but not in obese subjects.
  • The exercise-induced changes in gut bacteria and short-chain fatty acid production were largely reversed once exercise training ceased.

The authors concluded: “These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet, and contingent on the sustainment of exercise.” [Note: To be clear, the exercise-induced changes in both gut bacteria and short-chain fatty acid production were independent of diet and contingent on the sustainment of exercise. However, only the production of short-chain fatty acids was dependent on obesity status.]

 

What Does This Study Mean For You?

is our microbiome affected by exercise gut bacteriaThere are two important take home lessons from this study.

  • With respect to our gut bacteria, I have consistently told you that microbiome research is an emerging science. This is a small study, so you should regard it as the beginning of our understanding of the effect of exercise on our microbiome rather than conclusive by itself. It is consistent with previous studies showing an association between exercise and a potentially beneficial shift in the population of gut bacteria.

The strength of the study is that it shows that exercise-induced changes in beneficial gut bacteria are probably independent of diet. However, it is the first study to look at the interaction between obesity, exercise and gut bacteria, so I would interpret those results with caution until they have been replicated in subsequent studies.

  • With respect to exercise, this may be yet another reason to add regular physical activity to your healthy lifestyle program. We already know that exercise is important for cardiovascular health. We also know that exercise increases lean muscle mass which increases metabolic rate and helps prevent obesity. There is also excellent evidence that exercise improves mood and helps prevent cognitive decline as we age.

Exercise is also associated with decreased risk of colon cancer and irritable bowel disease. This effect of exercise has not received much attention because the mechanism of this effect is unclear. This study shows that exercise increases the fecal concentrations of butyrate and other short-chain fatty acids. Perhaps, this provides the mechanism for the interaction between exercise and intestinal health.

 

The Bottom Line

A recent study has reported that:

  • Exercise induces a change in the population of gut bacteria, and the change was comparable in lean and obese subjects.
  • Exercise causes an increase in the number of gut bacteria that produce butyrate and other short-chain fatty acids that are beneficial for gut health.
  • These effects are independent of diet, but do not appear to be independent of obesity because they were seen in lean subjects but not in obese subjects.
  • The exercise-induced changes in gut bacteria and short-chain fatty acid production are largely reversed once exercise training ceases.

The authors concluded: “These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent on diet, and contingent on the sustainment of exercise.”

For more details and my interpretation of the data, read the article above.

 

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

UA-43257393-1