Are Toxic Chemicals Lowering Our IQ?

Is Chemical Brain Drain A Pandemic?

 Author: Dr. Stephen Chaney

In a past issue of “Health Tips From the Professor” I examined the evidence suggesting that toxic chemicals in the home could cause childhood asthma. That is alarming because asthma can predispose individuals to other diseases and affects quality of life.

Confused ChildBut, what if that were only the tip of the iceberg? For example, a recent headline stated: “More Toxic Chemicals [In Our Environment] Are Damaging Children’s Brains”. If that headline is true, it’s downright scary.

The authors of this study suggested that toxic chemicals which are abundant in our environment can cause decreases in IQ and aggressive or hyperactive behavior in children – and that those changes may be permanent.

The Study Behind The Headlines

The paper that generated the headlines (Grandjean & Landrigan, The Lancet Neurology, 13: 330-338, 2014) was a review of the literature, not an actual clinical study.

Based on published clinical studies, the authors identified 12 chemicals commonly found in the environment as developmental neurotoxins (toxins that interfere with normal brain development) based. [If you would like to find out what those “Dirty Dozen” chemicals are and where they are found, click here.]

This finding compares with 6 developmental neurotoxins that they were able to identify in a similar study in 2006.

The authors were not claiming that the number or amount of toxic chemicals changed between 2006 and 2014. They were saying that science has advanced to the point where we can classify six more chemicals that have been in our environment for years as developmental neurotoxins.

Even more worrisome, the authors postulate that many more environmental neurotoxins remain undiscovered.

Are Toxic Chemicals Lowering Our IQ?

To answer that question, you need to look at some of the studies they cited in their review. For example:

  • Elevated blood lead levels in children are associated with as much as a 7 point decrease in IQ (Lamphear et al, Environmental Health Perspectives, 113: 894-899, 2005).
  • Elevated fluoride levels in drinking water are also associated with as much as a 7 point decrease in IQ (Choi et al, Environmental Health Perspectives, 120: 1362-1368, 2012).

The effects of many of the toxic chemicals on IQ were difficult to quantify, but the authors estimated that exposure of US children to just 3 of the chemicals (lead, methymercury and organophosphate pesticides) was sufficient to lower their average IQ by 1.6 points.

What Are The Potential Consequences?

The authors spoke of the environmental neurotoxins they identified as representing a “silent pandemic of a chemical brain drain” that could cost the US economy billions of dollars.

One of the blog posts I read on this topic summarized the consequences in a very graphic manner. It said:

If one child’s IQ is reduced by 5 points, it doesn’t appear to make a big difference.  For example, that child might be:

  • A little slower to learn
  • A little shorter of attention
  • A little less successful at tests and at work

That might result in $90,000 in lost lifetime earnings

However, if the average IQ of every child in the US were decreased by 5 points, the effect becomes significant:

  • Only half as many members of the next generation would be “intellectually gifted”.
  • Twice as many of the next generation would be “intellectually impaired”
  • Lost productivity could be in the billions

Of course, statements like that are a bit over the top. Drs. Grandjean and Landrigan did not claim that the net effect of the chemicals they identified was a 5 point drop in IQ. Nor did they claim that all US children were affected equally.

Still, it’s enough to make you think.

Are Toxic Chemicals Causing Behavior Problems?

Angry boy portraitThe authors cited numerous studies linking the chemical neurotoxins they identified to aggression and hyperactivity. But perhaps the most compelling reason to suspect that environmental chemicals may be affecting brain development is the spiraling incidence of developmental disorders such as autism and ADHD. For example:

  • Autism has increased by 78% since 2007 and now affects 1 of 88 eight year old children.
  • ADHD has increased by 43% since 2003 and now affects 11% of children age 4-17.

Some of this increase could be due to better diagnosis of these conditions, but nobody believes that all of it is due to improved diagnosis. The authors claim that much of this increase is likely due to environmental exposure to the kinds of developmental neurotoxins they identified.

Is The Science Solid?

This is a difficult area of research. You can’t do the gold standard double-blind, placebo-controlled clinical trial. Nobody in their right mind would give one group of children toxic chemicals and the other group a placebo.

The studies cited in this paper were mostly population studies. Basically this means that they compared children with exposure to certain toxic chemicals to a control group that was as similar as possible to the first group except that their exposure to the toxic chemicals was less.

The limitation of this kind of study is obvious. We are usually comparing children from different locations or of different backgrounds. We almost never know if we have controlled for all possible variables so that the groups are truly identical.

As a consequence it becomes important to ask how many studies come to the same conclusion. For some of the toxic chemicals, such as lead, methymercury and organophosphate pesticides, the weight of evidence is very strong. For some of the newer additions to their list of developmental neurotoxins, it is pretty clear that the chemicals have neurotoxic properties, but the significance of those effects on the developing human brain are hard to quantify at this point.

The Bottom Line:

1)     A recent review claims that there is a good scientific basis for classifying at least 12 environmental chemicals as developmental neurotoxins that are likely to reduce IQ and contribute to behavioral problems in US children. [If you would like to find out what those “Dirty Dozen” chemicals are and where they are found, click here.]

2)     The science behind the claims in this review is solid, but not iron-clad.

3)     However, there are times when we need to simply ask ourselves: “What if it were true?” The consequences of lowered IQ and developmental behavioral problems are so significant that it may not make sense to wait until we have unassailable scientific evidence before we act.

4)     We all need to be guardians of our personal environment. But, it is not easy. The “Dirty Dozen” chemicals identified in this study come from many sources:

  • Some are industrial pollutants. For those, we need lobby for better environmental regulation.
  • Some are persistent groundwater contaminants. For those we need to drink purified water whenever possible.
  • Some are insecticides and herbicides used in agriculture. For those we need to buy organic, locally grown produce when feasible.
  • Some are found in common household products and furnishings. For those we need to become educated label readers and use non-toxic products in our home whenever possible.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Omega-3 Fatty Acid Deficiency And ADHD: Do The Effects Worsen From Generation to Generation

The Seventh Generation Revisited

Author: Dr. Stephen Chaney

Angry boy portraitDo the effects of omega-3 fatty acid deficiency on ADHD get worse from one generation to the next?

When I was a young man I read an article called “The Seventh Generation” in Organic Gardening magazine. That article was based on the old Indian admonition to consider the effects of everything we do on the seventh generation of our descendents.

The article was written before the environmental movement had co-opted the seventh generation concept. It was also written at a time when the food industry and the public had really started buying into the “better living through chemistry” concept. Processed foods, fast foods and artificial ingredients had just started to replace real foods in the American diet.

The author envisioned a world in which, if we continued to eat nutrient depleted foods, each generation would be sicker than the previous generation until by the seventh generation our descendents would live miserable, sickly, shortened lives – and nobody would know why.

That article made a powerful impression on me. I always like to keep my mind open to new ideas, especially ideas that challenge my preconceived thinking.

So I asked myself “Could it be true? Could eating nutrient depleted foods actually make each generation sicker than the previous generation?”

The author did not have the foresight to predict the obesity epidemic, so he did not envision a world in which we might live sicker, shorter lives in as little as one or two generations.

In addition the author was not a scientist, and his whole premise seemed scientifically implausible at the time. In those days we thought of DNA as the sole determinant of our genetic potential and as something that could not be influenced by our environment. Now we know the DNA and the proteins that coat the DNA can be influenced by the foods we eat and other environmental factors – and that those changes can be passed down from generation to generation. This has lead to a whole new scientific discipline called epigenetics.

Could it be true?

All of that leads me to this week’s article (Bondi et al, Biological Psychiatry, doi:10.1016/j.biosych.2013.06.007). Let me start by pointing out that this is an animal study. It was done with rats. I usually base my health tips on human clinical trials, but it is simply not possible to do multi-generation studies in humans.

The authors hypothesized that omega-3 fatty acid deficiency could be associated with psychiatric disorders such as ADHD, autism, schizophrenia and depression. They based this hypothesis on the known role of omega-3 fatty acids in both brain development and maintenance of normal brain function. They also pointed to numerous clinical studies showing that omega-3 fatty acids could either prevent or reduce the severity of these diseases in humans.

They focused on adolescent rats as well as adult rats because these diseases frequently emerge, and are sometimes more severe, during the adolescent years in humans. Finally, they included second generation rats in the study because the change in our food supply that created an excess of omega-6 fatty acids and a deficiency of omega-3 fatty acids started in the 1960s and 1970s. They reasoned that if the effect of omega-3 deficiency is multigenerational it would be more severe in today’s human adolescents. As I said before, you can’t do multigenerational studies in humans, but you can do them in rats.

They separated litters of rat pups from omega-3 sufficient parents into two groups. One group was fed a diet sufficient in omega-3 fatty acids, and the second group was fed an identical diet except that it was deficient in omega-3 fatty acids. When the omega-3 sufficient group reached adulthood, they were mated and their offspring were continued on the same omega-3 sufficient diet. Similarly, when the omega-3 deficient group reached adulthood, they were mated and their offspring were raised on the same omega-3 deficient diet.

They put each group of rats through a series of behavioral tests when they were adolescents and again when they were adults. It is beyond my expertise to analyze the validity of rat behavioral assays, but the authors claim that the tests they employed were good measures of behavioral traits in human that would be classified as hyperactivity, anxiety, attention deficit disorder and reduced behavioral flexibility. [If you have adolescents in your household, some of those behaviors may sound awfully familiar].

The results were thought provoking. They found little evidence that omega-3 fatty acid deficiency triggered these behaviors in the first generation rats. However, they found strong evidence that omega-3 fatty acid deficiency triggered each of those behaviors in the second generation rats – and the effect was much stronger in the adolescent rats than in the adult rats.

The Bottom Line

At the present time, it isn’t possible to predict the significance of this study for you. This is a single study. And, it is an animal study. It could mean nothing, or it could mean everything.

We do know that the incidence of ADHD in US children has increased by 38% from 2003 to 2012 – and nobody really knows why. We also know that some studies have shown that the American diet is often deficient in omega-3 fatty acids. These same studies have suggested that providing adequate amounts of omega-3 fatty acids in the diet may prevent or reduce the symptoms of ADHD.

I’m a hard-nosed scientist. So I’m not going to be one of those bloggers who writes sensational headlines claiming that omega-3 fatty acid deficiency, or some other nutritional factor, is the cause of our skyrocketing rates of ADHD.

But, it is enough to make you wonder “What if? Could it be true?”

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Do NOT follow this link or you will be banned from the site!